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LAMINAR BOUNDARY-LAYER FLOW NEAR SEPARATION
WITH AND WITHOUT SUCTION

By R. M. TERRILL*
Department of Mathematics, University of Manchester

(Communicated by M. J. Lighthill, F.R.S.—Received T October 1959)
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Numerical solutions of the laminar boundary-layer equation for the mainstream velocity
U = Uy(1 — }x) without suction have been obtained by Hartree and Leigh, and the solutions
have suggested that a singularity is present at the separation point. Assuming the existence of

PHILOSOPHICAL
TRANSACTIONS
OF

* Now at Department of Applied Mathematics, University of Liverpool.

VoL. 253. A. 10o22. (Price 14s. 6d.) i [Published 8 September 1960

[ ,Q
o) Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @%I%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

/
A

1
—

NI
OH
e
)
=0
=w

PHILOSOPHICAL
TRANSACTIONS
OF

B N

P
4
/|
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

this singularity, Goldstein developed an asymptotic solution in the upstream neighbourhood of
separation, but his solution required that a certain integral condition must be satisfied. Stewart-
son extended this asymptotic solution so as to be independent of any integral condition. Jones
and Leigh have compared the numerical and asymptotic solutions and have found satisfactory
agreement between them.

In part I of this paper the work of Goldstein and Stewartson has been extended to include suction
through a porous surface. The stream function i, is expanded in a series of the type

Uy =2t gsri%o E'f,(7) + 218 In E[Fy(n) +EFg(1)] + (€0 In £),

where § = x4, # =y,/2%% and (x, y,) are non-dimensional distances measured from the separation
point. Analytical solutions for the functions f,.(y) (r=0, 1, ..., 5) have been obtained and the
solutions for r =0, 1, ..., 4 reduce to those given by Goldstein in the case of zero suction. The
solution for f; () without suction was confirmed by comparison with the numerical work of Jones,
and corrections were made to his values for two constants. The solution for f;(5) without suction
was next considered so as to show that Goldstein’s condition is not satisfied. This condition required
the vanishing of a certain integral estimated by Jones at (—4 +4) af; its value is now found to be
(—8:62+0-01) af. Following Stewartson, solutions for the functions Fy(y) and Fg(y) are given.
Numerical expansions for the skin friction and the velocity distribution near to separation have
been obtained. Numerical tables are given for the functions f5(%) and f,() and their derivatives
which are required for the computation of the velocity distribution.

In part II there is developed a numerical method, suitable for an automatic computer, by
which the velocity distributions at all cross-sections to separation can be obtained from that at the
leading edge. In this method Gortler’s transformation is applied to the boundary-layer equations
and then, by means of the Hartree~-Womersley approximation, derivatives are replaced by differ-
ences. The resulting simultaneous equations are solved by an iterative procedure which involves
the inversion of matrices. The program has been written so that given a general external velocity
distribution and velocity of suction only a few specified subroutines are required.

By this method, the boundary-layer flow was computed for the mainstream velocity U = U, sin x
(corresponding to potential flow past a circular cylinder) and a certain constant velocity of
suction. Tables have been included showing the velocity distributions at selected cross-sections
and giving the skin friction, displacement thickness and momentum thickness. The position of
separation obtained was 114-7° from the forward stagnation point, whereas for the same suction
velocity, Bussman & Ulrich gave 120-9° using a series expansion. The difference between these
values was discussed and the former shown to be accurate. Near separation similar behaviour to
that found by Hartree and Leigh was experienced, thus confirming the existence of a singularity at
separation. The numerical results were compared with the solution given in part I and excellent
agreement was obtained. The functions f1(9) ... f;(7) depend on a parameter a,, which was deter-
mined by comparing the numerical results with the asymptotic expressions for the skin friction and
the velocity distribution near to separation. Both methods gave a, = 0-555.

The work was repeated for the same mainstream flow U = U, sin x without suction. The
position of separation in this case was 104-45° and «; = 0-676. (Leigh obtained a; = 0-492 for the
mainstream flow U = U,(1 — {x) without suction.)

A range of solutions of the equation of similar profiles has also been obtained. In particular,
the curve which divides the wholly forward flows from those with backflow is shown. The separa-
tion profiles for the two cases of potential flow past a circular cylinder have been compared with
corresponding solutions of the equation of similar profiles.

Fuller details of the numerical results, giving the velocity profiles at different cross-sections for
both flows past a circular cylinder and the solutions of the equation of similar profiles, are con-
tained in the author’s Ph.D. thesis at Manchester University.
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 57

I. A SOLUTION OF THE LAMINAR BOUNDARY-LAYER
EQUATIONS NEAR THE SEPARATION POINT

1. INTRODUCTION

The equation of momentum for steady, two-dimensional, incompressible laminar boundary-

layer flow is
1d 2
S e (1)
“ox dy pdx  dy
dU = %
and the equation of continuity is gz+z; = (3)

where x is the distance measured along the surface, y is the distance normal to the surface,
u and v are the velocity components in the directions of x increasing and y increasing
respectively, p the density, v the viscosity, dp/dx is the pressure gradient and U(x) the
mainstream velocity.

The equation of continuity can be replaced by the introduction of the stream function

¥ such that N o oy ”
Cdy’ T o«
The boundary conditions are:
i) at th f: =0
W atthesurBees =0y o, vm— (Upiu), )

where [ is a typical length and U, a typical velocity of the system and v (x) the given non-
dimensional velocity of suction;
(ii) as y — o0, u tends continuously to the mainstream velocity so that

u—> Ulx); uldy” =0 (r=1). (6)
If at the surface y = 0 dujdy =0 (7)
separation occurs. The equations may be made non-dimensional by writing

;X ,ﬁR%y ;U , RZv b
x"is !/‘“T) u“T]—Os v U: [7 pUQs (8)

where R is the Reynolds number U, //v. Assume that the velocity profile at x” = 01is given by
w(0,y') = a1y +ary? +azy ... (9)
and the pressure gradient by
—dp’[/dx’ = po+p X +pox"2+ ... (10)
and the velocity of suction by
v'(x',0) = —v,(x) = — (vo+v, & +vx'2+...). (11)
The non-dimensional stream-function ¥’ must satisfy the equation of motion

By oy Y ey
dy’®  dy’ dx'dy’ dx dy’? " dx’

(12)
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58 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
and the boundary conditions
W ' ;L
—0767 = 'US(X), @7 =0 at y = O,
(13)
W'

—u'(0,y') at « =0.

dy’

If there is no singularity at the initial section §’ can be expanded as a double-power
series in x” and y" and certain coefficients of this series will be given by the conditions (13).
On equating coeflicients in equation (12), relations are found between the coefficients
a, p, and v of equations (9), (10) and (11).

If a, + 0, the coefficients 4,, a,, a; may be taken to be independent and the other coeffi-
cients a,, as, g, ... are determined in terms of them by

—2lay = po+a, vy,
3lag = povy+a, v, (14)
—5lay = 2a,p,+ 3.4 a, v+ 2pv3+2a, 0§+ 2a3v,.

When a, = 0, only the coefficients ag,4,,, ... are independent and the remaining a’s are
given by

—4la, = pyus,
5la; = pyvd, (15)
—6lag=—2pypy+povs
Tha; = —Tpoprvo+pov3—5p50;-

The conditions (14) and (15) have been given by Rheinboldt (1956). If these conditions
are not satisfied, there is an algebraic singularity at x = 0. The problem of finding the
behaviour of the solution at points close to the initial section when @, & 0 and not all the
conditions (14) are satisfied has been studied by Goldstein (1930) for flow over an imper-
meable surface, and this has been extended by Rheinboldt (1956) to include suction or
blowing.

The solution for flow over an impermeable surface near a position of separation (i.e.
when a, = 0) where not all the conditions (15) are satisfied has been considered by Gold-
stein (1948) and Stewartson (1958). This work will be extended to include suction or
blowing.

Using the same method as Goldstein (1948), we assume that there exists a singularity
at the separation point and put the variables into non-dimensional form in the following way.
Let x, Ug and dU,/dx be the values of x, U and dU/dx at separation. Then for the repre-
sentative length and the Reynolds number take

Us Ul

= R o)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 59

and for non-dimensional distances take

X = ;0 1 [ (17)
u Rty U b Ry !
= s e = 7= =1 St & 8
and also take 7, v, T, U, U b 2O v, 0, (18)
Equations (1), (2) and (4) become
du, ou, Ei_z_bﬁl 0%u,
“ox, oy, dry | og
_ 42
Uy @: s axl ) (19)
doy gy db
dv, ldx
. o) _ éQl) —
At separation, (d—xl)x1=0 —(—Ul ) 1,
so that the pressure gradient can be written
g% (1P Pyt (20)
1
The solution is found by taking
—xb, gL
g =X = 2%.76'%: (21)
and ¥, — 2L, 7). (22)

Goldstein assumed that the first condition in (15), namely 2a, = — p,, is satisfied, and
from equation (20) p, = —1 so that a, = }. As du,/dy, = 0, the boundary condition

=it Sy at m—0 (23)
r=3
was taken. In equation (22) he took
SE&n) = 3 fnE (24)
and as a result found that (%) =2} § o, X3+, (25)
91/ yy=0 r=1
where a, = f,(0).

By substituting (24) in the equation of motion, f,(7) can be determined. Goldstein
reasoned that all the «, in (25) can be found in terms of «; and P, and that «, is probably
determined by the condition #, — 1 as y; —co0 at x, = 0. However, it is necessary that a
certain integral (Goldstein 1948, equation (108)), arising from ensuring f4(7) is not ex-
ponentially large, be zero. This integral has now been shown to be non-zero (see §4 below).
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60 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

Stewartson overcame this difficulty by introducing logarithmic terms into the expansion
for ¢, in equation (22). By trial, it is found that the most general form for ¥, is

=B 3 L) E+2 P IEF () +EF )] +0E°Ing), (26)
which gives  w — 22 3 £/(1)¢+ 257 W ELF4(n) +EF4(n)] + O(E* ng). (21)

It follows that the assumption (23) is invalid since %, contains terms that tend to infinity as
x, - 0. However, this form for ¢, resolves the difficulty over the integral because £;(7)
is chosen so that the contribution to the integral makes it zero. Another important point
is that the double infinite series in powers of £ and In £ introduces an infinity of arbitrary
constants, namely, a,,,, if ¢; &= 0 and «,,,; if o; = 0. This confirms the solution without
singularities obtained by Goldstein in § 6 of his paper. Itis to be expected that the arbitrary
a’s will depend on an initial profile.

2. THE SOLUTION

The solution will follow the method used by Goldstein (1948) and Stewartson (1958).
Take the independent variables

g = x%’ = 2‘3;&’ (28)
and take ¥, = 2EE3f(E, ), (29)
where FE1) = 31,0 € +E InELF () +EF)] + 0 Ing). (30)
Then 7 | yrEg-1 ), (31)
and by substitution in (19), the equation of motion becomes
93f 92f f o f S\ S pr_
Vo 2(an) +Eloaemaae) - S8 -0 (5
The boundary condition (5) becomes
o _ af _
o= 0 (YR = ) at a=0, (33

where V,(x,) is the non-dimensional velocity of suction related to the variables (x,,y,). This
is connected to the velocity of suction v (x) in equation (5) by

U, 3
V(%)) = (—:“((“iﬁ/fix)‘l) vs(%)- (34)
Expanding V() in a power series
Vix)) = Vo+Viw,+Vox3+... (35)

the second condition in (33) becomes

Vr§

T

UV E+ IV E+ ..} (36)

S&0) =—213 ¢
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 61

The equations and their solutions for f, f}, ..., f5 will be considered first.
If , is expanded as in equations (29) and (30), then f,(y) will satisfy

St S st S (s 4 S B =0 (r=0,1,..,8),  (37)

where P}, = 0 if {r is not an integer.
The equation for f;(7) should also contain the term

Jo Fs—foFs (38)
on the left-hand side. This has been omitted for convenience and it will later be shown that
this is zero (see § 5).

The boundary condition (33) becomes

FU0) =0 (r=0,1,2,...,5),

/;(0> =0 (7‘ =0,2,3, 4)} (39)
£1(0) = =278, f(0) = —2747
A further boundary condition J5(0)=0 (40)

is introduced. This implies that the series expansion for du,/dy, starts with a term in x} as
indicated by the numerical work of Hartree (19394), Leigh (1955) and the present author
(§§14 and 15).

For numerical work later, it is desirable to have the velocity distribution in the neigh-
bourhood of separation. This is

w = 23 f/(1) €+ FE Ing), (41)

where F(£,In{) contains terms of higher order than 7. This may be written
0= 20,0501 (42)
where 2bq ., = 7}22 ”r-{z’ (43)

provided that F(£,In{) is negligible. It is easily shown that x; will have a very small value
before the terms involving In £ become significant and that this value of x, is smaller than
the accuracy of the numerical results (§14.2). Then for the numerical work, provided y,
is sufficiently small, (42) will give %, in the neighbourhood of the separation point.

The equation for f(y) is S sf fryofe 1, (44)
with boundary conditions So(0) =£5(0) =_f5(0) = 0. (45)
The solution of (44) satisfying these boundary conditions is

Jo(n) = 7% (46)
and, from (43), a, = 4. (47)

If we use the solution for f(7) in equation (46), equation (37) can be written

F =W 3+ 9 pf) — (r+3) nf, = G, (48)
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62 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
r—1

where G, =3 [(r—s+3)f fr—s—(r—s+2) f f ]+ P, (r=1,2,...,5) (49)
s=1

and P;, = 0 except when }r is an integer.

The equation for fi(7) is V=33 5] —4nf; = 0, (50)
with boundary conditions  f](0) =0, f1(0) =—2"%V],. (51)
The solution of (50) satisfying these boundary conditions is

Si(n) = oy =275 (1+4r4), (52)

where ¢, is a constant; then, from (43),

3la, =—V,. (53)

The equation for f,(7) is
S Y 33— oy — — o — 2V e (1) + V3, (54)
with boundary conditions J5(0) = f5(0) = 0. (55)

The solution of equation (54) satisfying these boundary conditions is
Jo(n) = =580’ + o> —§ 2y Vo + s Vi, (56)
where a, is a constant; then, from (43),
4la, = (Vi—4a}). (87)

Before considering the solution for f;, the complementary functions of the solution of
the equation for f,(7) will be discussed. This has been done by Goldstein (1948, pp. 52-55).
There are three independent complementary functions 72, g, and &, where

o (mei-dtg
&= 2l (<3 — 1) (m+ 1) 87 (4m 1) (58)
and ho=— S o (m_%_%r)'(—%)'”‘tm . (59)

T Bl (—E— ) =D 8n(Em—1)

The series for g, terminates when 7 = 4m+2 and that for 4, terminates when r = 4m+-1,
m=20,1,2,....

Goldstein showed that g, and £, are exponentially large as 7 — 00, except when they are
finite series. However, the combination

PR G D 4 ami 1, amt2) (60)
(=D (—F—2n! * ’ ’

which is also a complementary function of equation (48), is not exponentially large.
In particular, Goldstein found that

ky = hy—

3.2iq% m s 15 15.1.31 15.1.3.3.71
117383 ~ raoranzi! T aiz T 6 i S TREEE
10(1!) 160(1!) 2ly2 ' 2.31 g 3.41 g

3my? P
+22(1|)2[4ln771r21n2+y tm—5], (61)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 63

4 g oop T2 m  (p’ 3.7, 3.1.7.31 3.1.1.7.3.11
M M T TS T Tyganetls T 11 T slely 7.31 P
3.1.1.3.7.3.1.51 3.1.1.3.5.7.8.1.5.9 1 21. 2%t |
- 11.4! P 15.5! _";FBJ“”}_ so(r? (62)

The equation for f; is

3 — 305 s —6nfy = — 100, 0,7% —faiy’®
+ Vo2 — 20, + dufn® —Jay b+ Ve + 30t — 3 V3 2Y°,  (63)
with boundary conditions S3(0) = f7(0) = 0. (64)
The general solution of the differential equation (63) satisfying the boundary conditions
(64) is
Ss(n) = ayn?+day 0y —gg) — Jad(1+ I — ) + 3V, 2 (H50d1° —ay7°)
A Vit (23/61) Vire,  (65)
where a4 is a constant.
Since f;(7) must not be exponentially large, it is necessary that g; and %, appear in the
combination k. Thus it follows that
2ty o2
%o = B(LN3
and  fy(n) = ay?+dayapn—Fai(1+37%) +jaiks
+3V 24 (Fo0dn® —apn®) +4 Vin*— (2Y/61) VyS.  (67)
From equation (43), it follows that
2¥ga3

|

(66)

The function £4(7) is a complementary function of f;(7) so that £;(7) must satisfy
ks —41°k5 -+ $n%k; — 6nks — 0. (69)
The differential equation for f,(7) is obtained by substituting for f, f, and f; and their
derivatives from equations (52), (56) and (67) into equations (48) and (49). Then f,()
satisfies
¢ Y Trfy = — 203y’ +Jadn® — 6(af+ 2, 05) 77 — 1 6afayn — 320t
P Bt — 4k + k) + T, 2Bt — ot
+ 16ain® — 203 — §ad[ (1 +47*) ks —$n°ks -+ 397k ]}
+Vilhay® —dadnt +day -+ V32H —foan 1 — 22,y + Vi, (70)
with boundary conditions ' S4(0) = f7(0) = 0. (71)
The complementary functions of f,(7) have already been discussed and a particular

integral is easily obtained for the polynomial part of the right-hand side of (70). Thus only
a particular integral of

S =3y T f = 3pat(n?hks— ks -+ 3ks) —§Vo 2had[(1+§n?) K5 —$n°k5 1+ 3n%ks]  (72)
is required. This was obtained by looking for a solution

S(n) = P(n) ks+Q(n) K3+ R(n) ks, (73)

8 VoL. 253. A.
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64 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

where P(n), @(7) and R(y) are polynomials and by using relation (69) for £5. In this way
the general solution of the differential equation (70) satisfying the boundary conditions
(71) was found to be

Ja(n) = e 4P (0 —15577) +2(05+ 20 05) (71— g4) —Fofapn?
16 4(/:' 3'2i7’%h 3. Lg7
+_§"al‘ 3+W 41754l
+ Vo2 8ed(n —g4) — S+ Fodn® —hed[4(nks —g4) +n2k5])
+ V(o —d50dn”) —o V32t e n® e Vi, (74)
where a, is a constant.
The only exponentially large terms in equation (74) are g, and %,. Since must not
y €xXp y larg q 4 4 o\

be exponentially large, the terms g, and %, must appear in (74) in the combination k(7).
The terms containing g, and £, are

8.2kt ]
_5'(‘{!53“ athy—2(a3+ 20, ay) g4-i$a?VO2%‘g4. (75)
Comparison with (62) yields
73
2(a3+ 20, ag) +5 20V, 2F = W%‘: (76)

and substituting the value of «, from (66) gives
3

T
400(1]) (35 8. 2%) O‘BM%'%O‘%

IS

oy = 2, (77)

It follows that
Ja(n) = ayn® + 5P (0° —15577) + 2(03+ 2y 05) 1 —Fof oyt - Bafa kg + Yo (ks — 1P+
+ Vo2 oty — oy’ +Badn® — Shai[4nky + ki)
+ V3 —16597 )—*-V32206177 ARSI LA (78)
Then Si(0) = a2y o, V28 (79)
so that when ¥}, == 0, f;'(0) is not equal to the constant of integration a, as in the case of no
suction. For convenience a, will be taken as the constant of integration and not as £, (0).
When V|, = 0 the solution (78) is equivalent to the form given by Goldstein.
It should be noted that f;(7) in equation (67) and f,(7) in equation (78) are not given
explicitly in increasing powers of ¥} since they contain the constants «, and a, which are

functions of V.
It follows from (43) that

1 Tm? T
ag = (5—‘6(‘)0‘&‘!‘)”4) ot —geoby +aily2 (432(11) ) —50%4 Vi+736V5- (80)

The function £,(7) is a complementary function of f,(y) so that k() must satisfy
ky — ki -+ 4p°ky—Tnk, = 0. (81)

The differential equation for f;(7) is obtained by substituting for f,, f,, f; and £, and their
derivatives from equations (52), (56), (67) and (78) into equations (48) and (49). Then,
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 65

by using equations (69) and (81) for the replacement of £ and kY respectively, f5(7) is
found to satisfy
15" =305 + 805 —8nfs
= 1603 a, (292K’ — Ik, -+ Tk,) + Sa3{ (Lol n® — 36adn + bayy?) ks — (2503 n* — 2803+ 18w, ) k4
(4003 122,) Fy (o Po-+3208) 17— §oday 19— 00y §a, (— Py -+ 40af) 7
— 14 (g 0ry) 92— 16(203 4oy ) oy 7 — 3203 oty + Vo 28 — 8aZa, [ (1 +47*) K
=803 Kyt g7k, +Sod — (Fsn” +50°) K5+ (3800 -+ 129%) ks — (20° +29%9) ko]
—ay(§7*+2) + P (F51° — 1) +aiay (300 —49°) —af(389° 16“0)}
VBT 11+ 81) K (— P — 50 10V (17 -+ 329°) Ky 2y (3°+ 47)
7+ 32) ) VRl 207} Vi 407+ VER ),

(82)

with boundary conditions  f;(0) = —2-%, f/(0) = 0. (83)
The complementary functions for f;(7) are 52, g; and k; where & is the terminating series
hy — 1+-dnt— ghar (84)

Thus g; is the only complementary function containing exponentially large terms. A
particular integral is easily obtained for the polynomial part of the right-hand side of (82).
A particular integral for the terms involving £, is obtained by looking for a solution of the

orm S 1) = Plo) Kyek Qo) Ki+-Rlk, (85)
where P(y), Q(5) and R(y) are polynomials, and by using relation (81) for £;. This also
yields a simple solution.

However, a particular integral for the terms involving £, is not as easy. If a solution of
the form (73) is tried, it is necessary for P(y), Q(7) or R(y) to be an infinite series. Because
of this, a simple solution is chosen which will satisfy the differential equation for most of
the £, terms on the right-hand side of equation (82) and the one selected was such that only
a multiple of £; remained on the right-hand side. Hence the general solution of (82) can
be obtained if a particular integral of

| fm___%’]?](‘” + %ﬂ%f’—S}]f: k; (86)
is found.

Using equations (61), (58) and (59) to express k5 as a power series, wecan write equation
(86) as

S =33+ S —8yf = § 4na, 7;4”‘1-C§ (4n+-1) b, p*n, (87)
n=1 n=0
L (n—3)! (—1)!

where b= ML%MM—@ﬁ%%~U% (58)

A a1

ol (=P (n+1)! 8% (4n—1)""
3.2i7%

and C = l”a‘(gl)-a. (89)
This has a series solution f= § a, 2 —C % B3, (90)

=1 =0

8-2
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66 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

- i (k=) (63131
WO i (5 BT IPA DiE e )
and  f,—— 1 it ¢ (n—%) (n ——%—)-' (92)

64(p+2) (p+1) (p—1) (p—D (p+H)!8 (—=PLS  nl(n—P)!
Let F(p) be an analytic function of p such that

Flp+1)—F(p) = ((_ %_)%g,((‘[;fg)léﬂ, (93)
and F(0) = 0. (94)

Then, in terms of F(p), «, and §, can be written

_ (2!) £(p)
%= B(p 0 p(h- 1) (-8 (hT DTS 29)
5 1041 (F(p+1) —F(—) 96)
’ gt 64(p+2) (p+2) (p—1) (p—2) (p+3)!8"
From equations (93) and (94)
F(p) = {ZFl[—zL’ ?]} when p=0,1,2,.... (97)
4/ pterms

All the hypergeometric functions that are considered have unit argument. Bailey
(1935, p. 93) has given the sum of the hypergeometric series ,F) [a, ?F] to p terms provided

f = a+b and p is a positive integer. From this,

(p—=9'(p+1)! Lo+
HOR v rvae RARS St

Bailey’s result is proved only for p a positive integer but the same formulae lead to the
result (93) for non-integral .

(98)

3ot
In particular F(—3%) = 1?2;;)2. (99)
Hence the series solution for f(7) is
(1)2 F(p+1) g+
S0 = 50\ 2 (D) (p D) (0 1) (D) ()18t
© F(lb) 7741)+2
- =B (5D
© 3ﬂ%2%’74p+3

RS D D D (p- D (prRis

Since there is only one exponentially large complementary function gj, it is expected
that f; will behave asymptotically like a multiple of g;. From equation (58), g5 can be written

(100)

@ 7]4m+1

(3

nsz+-Hm—%Hm“%Hm—%VM8”

(101)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 67
Consider the contour integral
_14 f 2,” 4s+1ds
2mi ) sin (27s) (s+4) (s—%) (s—2) (s—%) s! 8"

The path of integration is taken around a contour consisting of the straight line from
—N—o0ito —N+ooiand the part of a circle of infinite radius to the right of that line. In
this way it may be shown that

(102)

2 3nigiytnts niok
TASEY D 0 H ) - D - k38 1N
’\,371‘%’2?E © (—8)"(n—3)! ~_371’3’2‘5/{5# 2b g p2
(51} 2 (4n 1) (404 3) (n - 5) (4n 1 9) g1 32 32(31)2"

(103)

Thus equation (103) gives the asymptotic expansion of the third term in equation (100).
To discuss the first two terms of equation (100) write them as

___« 2 4,P+1 + 5 f} 4,?4":{ +
){z(p ) F[ Lo+2 '74“_§(p Db 5z "H} (104)
o (p+D(p+1) (p+3) 80 =0 pl(p+D)H(p+3) 8

and consider the contour integral

1 J(—‘“l) (—s—2)!(s—§)! F[z’ [y 5+4],74s+2

s|~4

o EESIET (105)
taken around the same contour as before. In this way it is found that
IF[§’4’n+:|4n+2 ——-'F|:2’4’ ]4nl
{5; 4,7’l+4 7 E(n n+41 1
S Al ) (- g 8
(=3 =Pt $(2)[—F (=1 —F (—2)+F(0)+3+41 In8
~TE S () [~ (—) - F (9 +7(0) +3+4Ing—Ins]
d o[h 5 st? o (—1) (—3)! (n—28) 1 g (n) ~**
a F[z 4 4]) } , 2 1
+(ds3 L Ls+4d) s +,{§0 n! (2—n) 8- n+¥
n+2
3nt = (n+3)! (—8)n+!
— . 1
()20 (1 18) (1) (0 3) (o ) 7 (106)
d
where ZF(s5) = a}lns! (107)
15 _p109
and ¢(n) = 3F2l:2, 7 n+%3 : (108)
» Tt
It can be shown that ¢(n) satisfies
(n—1) (n—7%) €3
3 — 1) = . 109
(=3 =9 P Y = i gm) (109
. 2(3!)
In particular, $(2) = — i (110)
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68 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
so that the values of ¢(3), ¢(4), ... can be deduced in succession. If
—3)]
D(n) — (BB ()] ®(1) = 0, 111
O o = M ONR ) (1)
. 372 1, —%
it follows that D) = — 357773 {ZFl[z’ ﬂ} . (112)
Also it can be shown that Y e
d 1,8 543 3 5B
P D [P b ] e
671'% 2% 1
5(%!)2-4r52%(%!)21?(g). (114)
Finally, with the use of
50— B0 gy
@
(31 (21 (21 e
1405 (&) prsy &)
P =0y O gy )
and F(—5) =ir4+4—-3In2-+ y,l
F(0) = —y, (116)
F(—%) =—y—2In2, j

where y is Euler’s constant, the asymptotic expansion of the first two terms of fin equation
(100) can be shown to be

512( 3.2 2 p (n+ 2()n(;;)1?)( (;z j—) ;) npi <2F‘F’ "ﬂm terms

o3 (n—-3)! (~8)" 23D sy 2 4 12 (S
64. 2&(% ) e 2 o+ (n+3) (n+3) (n+3) 7]4n+1+ ont $(3) n*+1(E)?F(3) hs(n)
40 1;)2{1+1 7} — 125(1|)2{7’+21n2 sm—3+4lng} ‘ (117)

An explicit formula for F(2) has not yet been found, but it can be computed, since F(m -+ §)
for, say, m = 5 can be found by interpolation from the values of F( p) for integral p and thus
F(3) will follow by use of the recurrence relation (93). A check is possible since the values
of F(p+%) are also known.

Again, it does not seem possible to evaluate ¢(2) but a similar method is applicable.
®(n-+1) may be calculated by interpolating between integral values of ®(n) given by (112)
and hence ¢(2) from (111) and recurrence relation (109).

On combining (117) with (103), the asymptotic expansion for fis

¥ it
S1) 28y ~ HF ) 3 ﬂﬁ%~§%¢

2i(1h2 . bty ,

+5123(1;I!)3n: (n+2() (7281)L 1()11(;—;-)%—) nyt {2Fl[§, —g}nﬂterms' (118)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 69
The solution f(7) of equation (86) will be written
ot

Sn) = ﬁs(v)+7—@jg5(fi), (119)

so that p5(#) is not exponentially large.
Hence the general solution of equation (82) is

f5(n) = asn?+ By hs+Br 85+ a5y (— Py -+ 40af) n° —Fafasnt —Lfaia, 773+4(0‘10‘4+“2“3) U
+ 4oy ad+ 1603 oy (k5 -+ kL) +af( — P52k — 239k -+ 22k5) + 50“1{1’5 n) "‘ (11) gs}
+ Vo 2H{ — ooy (dnk,y 72k} — ot (4k 4 675+ %K) +aday (39 + 8n) + ko Py (20 +21)
5 (T T0) — )+ VB coleaad (167 L17) K-+ 239K+ 581%ks] + g 1
ot
_T%“:li”(s l—270‘1[1{)5(77 (%0 g5]}
+V032%{—‘—0‘277 +af (37t + 1)} g0 VinS 120V52E(3+77 )s (120)
where «;, £, and f, are constants. The first boundary condition in (83) gives
By = 8oy (a3 +ayay) +V, 28 (Fkat — 5 P) —a2 ViRt L V32 — 1V 2% (121)
and the second boundary condition in (83) gives
By = —4(ay05+ay ay) —3Paf I/;) . (122)

In order that f;(5) shall not contain exponentially large terms the coefficient of g, must

be zero. Thus
fo+ {50&1 +13a3 V3 = 0. (123)

Substituting for f, from equation (122) a, satisfies

2171‘2 204
oy = 58 (L) {50a}+13a2 Vz}——lli—gal a,V, 2%, (124)

where a, and «, are given by equations (66) and (77).

3. THE SOLUTION FOR f;(7) WITHOUT SUCTION

When there is no suction, a check on the solution for f;(7) is possible by comparison with
the numerical work of Jones (1948). In this case the solution (120) for f;, with the conditions
(121), (122) and (123) inserted, reduces to

fs(n) = asn®+8ay (0§ 4oy a5) g +a50, (— P, +40af) 776*%0‘%“3774_%@“?“2’73+4(“2“3+“1 )7
+doy af + 160 ay (3k5 + ky) -+ 3] —Lanhs —$503ks - 22K} 45008 ps (). (125)

The condition (124) for «, gives
" 25.2tntat a0
4 14(%!) a

(126)

The numerical values for a, and a5, obtained from equations (66) and (77) respectively, are

oy = 1-7784803, oy — 3-31102a3, (127)
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70 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
and substitution into equation (126) gives
o, = 7157304, (128)

The asymptotic expansion for f;(7) is

2 567ma} | o4 11\2 7/3) __ 3,307 5
_fs(’?) ~ 8“1(0¢2+“10‘3)*W+T[(1-) F(3)—§m 2] i) hy

Trada moia,n®  2mad
L “1%2 |6 T41%2 Lot
+{_5 1(— P, 4-40a8) — 15'2};(%!)} 537 a2

e
Sedet (Lt (22 by dm)]|pt—Yata

-
3 F(1N24(3 T qd
+{<x5+2l ﬂa1a2+50a?[2 (4D)24(3) 2% ]}77 +4zra1)a2771n

(LN 97t 32(41)2
21. 2483
+id(agas o ay) — 20(L1)* 2+(1|)2
449ﬂa5) Tada,  mada, 37mo3
60(1)Y "2tz g2 20802 T 24102
By substituting into this asymptotic expansion the numerical values of the constants,
the values of the coeflicients of the powers in 5 can be compared with those obtained by
Jones (equation (2-3-6)). The coefficients of (129) were obtained to four decimal places
and all the terms from 7% to 774, except for %, agreed with the terms of the numerical ex-
pansion due to Jones to the fourth decimal place. Jones replaced the coeflicient of #? in
(129) by a; so that comparison is not possible in this case.

(2In24y—in—38)dda, g

—l—(4<x1<x§—l— e (129)

From (43), )
@y = — g 80 (0 y27) — gngf;g FER[(1N2F(3) —int2H ). (130)
A method of finding F(2) was discussed earlier and this gave
F(3) = 1-2056, (131)

so if we substitute the numerical values of a,, a; from (127) and of F(3) from (131), a,

becomes a; = —0-000895. (132)

It is now appropriate to consider the work of Jones. He introduced the function f;(y)

h
where .75 = f5(n) —asn?—da o n — A3 (1 +4n* —5557°%) + 450, Py 15, (133)

and 1 is a constant to be determined later. The numerical asymptotic expansion for f;(y)
was used to start an integration of the differential equation at 7 = 4-0 towards the origin
as far as 7 = 0-5. He obtained the solution near 7 = 0 by fitting the polynomial

J5(n) = a+byp+-cpt+dpd (134)
obtained by neglecting terms O(#8). Since in this method only the condition for the absence
of exponentially large terms had been satisfied, the condition for a double zero at the origin
had still to be satisfied. This was done by ensuring that the series expansion of £;(7) for small

1, obtained from equations (133) and (134), did not contain a constant term or a term in 7.

This gave @, = 81,af, A=—0-84. (135)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 71

The numerical value of a, that has been given in equation (128) does not compare favour-
ably with this value. A is given by the coeflicient of % in the asymptotic expansion (129)
and, substituting the numerical values of the constants, this gives

A= 0-16, (136)
which again does not give good agreement.

In view of this it was decided to obtain f;(7) as a power series for small 7 from equation
(125) and to compare this with the numerical solution for f;(7), given by Jones (table 2),
in the range 0-5 < 7 < 1-0. The series expansion for small 7 is

Ss(n) —asn®—day ey —Aad (1 +37* —5327%) +50. Py 18
5. 2tnlad s

= ——/1(%5 4a1a477+ (Z??] %/1(1177 “-71?_‘1_"'“ +0(7]8). (137)
()

The left-hand side of this equation is not quite f;(5) as used by Jones since he assumed that
the asymptotic expansion of f;(7) did not contain a term in 72 Then if his f;(5) is given by

Js(n) =f5(n) —asn®—doya g — A} (L+3n —5han®) +F50y Pyt 4-p?s (138)
the asymptotic expansion (129) for f;(5) leads to
_ olrade, _ r2d(R)Pg(3) 2t
-5 —soaf| LA 32&!)2] (139)
Hence the series expansion of f;(7) for small 7 is

. 28(1N2g4(3)  obgh 21mtada
— 5_ 55,5 5 z 2) 1%)| o
Js(n) = —2143 4ocla417+{3 al 50061[ ont 32(%!)2]— 2i(7};!) }

5.2 ntadps

This indicates that the polynomial (134) should have contained a term in 2. A method of
finding the value of ¢() has been discussed earlier and this gave

$(3) = 1-36. (141)
Substituting the numerical values of a,, a3, 24, A and ¢(3) from equations (127), (128),
(136) and (141) in equation (140), the series expansion of f;(7) is

Js(n)ja8 = —0-16 —28-637 — 5-8672— 0-057* — 30475+ O (7®). (142)

The values of f;(7) and f; (1) have been computed and compared with Jones’s values in the
following table:

/N 0-5 0-6 0-7 0-8 0-9 1-0
Fs(m) from equation (142) ~16-0 —19-7 —23-6 —27-8 -32:5 —37-7
af {from Jones’s table 2 —15-8 —-19-5 —23-4 —27-7 —324 -377
filn) {from equation (142) —35'5 —37-7 —40-6 —44-4 —49-3 —55-8
a} from Jones’s table 2 —356 -37-9 —40-9 —44-8 —49-8 —56-4

The first term neglected in the series expansion (142) is
{ztet ol — 505021 (6103 + 520, 23)} 7 = — 0-07ad 7®, (143)

which shows that the differences in the values of f; are of a reasonable magnitude. Thus
there is excellent agreement between these results and they confirm the values of a, and A.

9 Vor. 253. A.


http://rsta.royalsocietypublishing.org/

/|
A 1

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

/A \

J

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

72 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

4. THE EQUATION FOR f¢(77) WITHOUT SUCTION

In obtaining the differential equation for f(7) the terms arising from F;(5) and Fg(y)
will be omitted so that the equation is in the form considered by Goldstein (1948) and Jones
(1948). In this case, f4(7) satisfies

J&' =35+ 5% — /e
= (81 fs T 4S5 —10S5) + (TaSut 5fofd —10/3/0) + (6/3/5 —8f3%),  (144)
with boundary conditions S6(0) =0, f5(0) = 0. (145)
Substitution of the solutions for f,, /5, /3, f; and f; from equations (52), (56), (67), (78) and
(125) gives for fi(7)
¢ — 316+ 505 — 9/
== 803 a3{5nky— 20mky -+ 14k} +- 80¢4a2{(——7/ —40p) ky+ (— 8894 —}ASZ)A +-140p3k 3
-+ 5005 (4n%p; — 20mps + 16p5) +Skab(6ky ks — 5k2) + [ 1603 agn? -+ L8atay ($7° — 287)
+4af(® — 2t AN ] By [ — 150 oy -+ L6toy(— 34yt +42)
g0 — 6377+ 2547 k3+[32a10¢3+2880¢40¢2f73+ 409 (127° —2519%) [ by
8 (of +ay o) (16— —§37°) + oty —§3af Pp® —3a, P (87° +-377)
18088 — 1002, S — (8adad -+ 16afay) n*+22%ta, 3+ (128af— 16, a5
— 160,00, — 8a3) 92— (72 00y + 1203 + 1602 ;) 7 — 3203 a3 — 1 6aF o2 (146)
In order to consider the work of Goldstein and Jones, this equation is written :
6 — 5135 + 51 —9Infs = — 16057+ G(7). (147)

The function fi(7) has the three complementary functions 7%, g; and &g where £ is ex-
ponentially large and g, is the terminating series

g6 = N-t151 — 15607 (148)
The appropriate solution of equation (147) is
Jo(1) = 4oy a5 (n—g6) +ks(n), (149)

where £4(7) 1s independent of a;. From the boundary condition (145) k¢ has a double zero
at the origin and since fg(7) must not be exponentially large, £; must not be exponentially
large. For this, G4(7) must satisfy the condition

[ ngs—rg) Coexp (— ) dy = 0. (150)

Goldstein assumed that this condition was satisfied and Jones, by a numerical method,
obtained the value — 4af -+ 4a$ for the integral so that it was possible that the condition (150)
might hold. The object of considering the solution for f; will be to show that this integral
condition is not satisfied.

~ To evaluate the integral (150) it is desirable to remove those terms on the right-hand side
of equation (146) which do not give rise to exponentially large terms in f4(5). From equa-
tions (86) and (119) p,(n) satisfies

15— 3105+ 30’5 — 8nps = k. (151)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 73

A particular integral for the terms involving p;(7) is obtained by looking for a solution of

the form Sn) = P(n) p5+Q(n) p5-+R(n) 5, (152)

where P(5), @(y) and R(y) are polynomials and by using the relation (151) for p5. The
previous methods are applied for those terms in k4, £, and powers of 7 that yield simple
particular integrals. These give a general solution
Jo(n) = agn*+Br ke +Fr86 -+ 10005 p5 + 16af a3 by -+ §arf oy (— Tn°ky — %77k + 83KY)
+H0abay K +33ata, K+ §al(1387k — 10717+ 67°K) + 03 -+, 03) (— 17+ 429)
— 5% P 7° =P Py (T5m° +17) -+ §ot e 1P+ 2500 (157 +) —§adayn?
—3(8afad +16afay) 1+ (day a5+ day @y + 205 — 32af) 11+ (8% 2y 25 +503) +76(1), (153)
where ag, f, and f, are constants and where j¢(7) is a particular integral of
J§ —30%6 + 515 — 9mjs = 1660t anky+Sta(6ky ks — 5ES?). (154)
By substituting the values of p;(0), £5(0) and £4(0) it can be shown that
J6(0) = jg(0) +fy — 16a; ayas — 8af o, — 5a3. (155)

Now f5(7) must have a double zero at the origin and must not contain exponentially large
terms. Introducing

Is(n) = Jo(n) +B1he+Psgs— 160 ayay—8afa, —3a3, (156)
where £, is a constant, we choose f; and f; so that /(5) has a double zero at the origin.
Thus the first boundary condition of (145) is automatically satisfied and the second boun-
dary condition can be satisfied by choosing the required multiple (#,—/f;) of gs. It follows
that the condition that the asymptotic expansion of f; does not contain exponentially large
terms is the condition that the asymptotic expansion of /() does not contain exponentially
large terms. From equations (154) and (156), /s(7) is a particular integral of

17— Ln3ls 4 52— Il = 166atay ky+taf(6ks ks — 5k?) + (2403 -+ T20f oy + 1440, 2y 0t3) 7.

(157)
Then the integral condition (150) becomes
fo( P31 +1801'") Le(n) exp (—g7*) dy = 0, (158)
where Ly(7) is the right-hand side of equation (157). Since
[ op =t akar) nexp (4t dr = 3, (159)
the contribution of the terms in 7 to the integral is
= 16a}a,+ 320, ayay+Ea3 (160)
and, from equations (127) and (128), this is
— 332-954a8. (161)
The remainder of (158), namely
[ 60t (B — 5} (b -ckon') exp (—drf) d, - (162)
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74 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

was evaluated numerically on the Manchester University Mercury computer. The function
k4(n) was obtained by integrating the differential equation (69) for £, using the Runge-
Kutta fixed step method. The asymptotic expansion (61) was used to find the values of £,
k3 and k5 at 7 = 4-0, and the integration was carried back to the origin. This gave a check
on the accuracy of the numerical method since at the origin

/ 3.2int p
k4(0) =1, K4(0) :”1‘6“(}773 and  £j(0) = 0.

A further check on these results was made by using the asymptotic expansion (61) for £,
in the range 2:5 < 7 < 40 and the values were confirmed. The requirement of accurate
results meant that a small step length of 0-01 was taken for the differential equation and
this was checked by halving the interval. The method for £, was similar to this using the
asymptotic expansion (62) and the differential equation (81). From these results the values
of the integrand were stored at the interval 0-01 and the Euler-Maclaurin formula was
applied for the integration.

f‘"f(x) dr = 3(0%) [ fy+ 2, +-2fy b o+ 2 £
— 15 ()2 [(fa —Sfo) =66 ()2 (' —fo") +...]1. (163)

The term 5(0x)%f, may be neglected so that the integral reduced to the trapezium rule

[0 s =309 Lot 2+ 2% + o+ 2 15 (164)

This gave a value for the integral of
(—341-578 +0-005) of. (165)

The value of the integral from 7 = 4-0 to infinity is negligibly small since it is
<fx‘1’f n'7exp (—4n*) dy < 0-0001af.
4

Hence from (161) and (165), the value of the left-hand side of equation (158) is
(—8:6240-01) af, (166)
so that the integral condition is not satisfied. Thus it is necessary to complete the series for

¥ by including the terms in In§ as given in equation (26).

5. THE FUNcTIONS F;(77) AND Fy(7)

The equation for Fy(n) is  Fy —3n3F; +539%F; —8yF; = 0, (167)
with boundary conditions F;(0) = F;(0) = 0. (168)
The solution of equation (167) satisfying these boundary conditions is

Fy(n) = fsn?, ‘ (169)

where f; is a constant. In equation (37) the term (38), namely f; F; —fy F;, was omitted
and from equations (46) and (169) this is clearly zero.
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 75
The equation for Fy(y) is

F§ —3n°Fg + 57°Fg— 9k = —16a, f517%, (170)
with boundary conditions Fg(0) = Fg(0) = 0. (171)
The solution of (170) satisfying these boundary conditions is
Fo(n) = 4ouf5(n—86) +Fsn*, (172)
where f is a constant. Substituting for g, from equation (148) gives
Fo(n) = 4o, fs(wa'0m’ —157°) +Bsn*. (173)

If the terms arising from F;(7) and Fy(y) are included in the differential equation for f(7),
equation (147) becomes

5 — 316 + 505 —9nfs = — 16 a5 7* + Go— 20, 5 (1 — 31° + ko). (174)

Hence the 1ntegral condition for a solution of equation (174) with a double zero at the origin
not to be exponentially large is

fo {Gs(n) — 20, B5(n? — 105 + 151"} (N2 — 105+ exp (—4p*) dp = 0,  (175)
ie. 128 2t} o) 5 = fé (m*—%n°+1§on"°) exp (—%7*) dy. (176)

Thus equation (176) determines f;. All the previous work for Fy(y) and Fy(y) remains
unchanged if there is suction present in the form (35). To evaluate the integral on the right-
hand side of equation (176) the case of no suction will be considered. From equation (166)
the value of the integral is (—8:624-0-01) «f so that

Bs = (—2-00+0-01) a. (177)

In principle the solution for further terms of the asymptotic expansion could be carried
out indefinitely but it is clear that the equations for the functions become increasingly
complicated.

6. NUMERICAL EXPANSIONS FOR THE SKIN FRICTION AND THE VELOCITY DISTRIBUTION
NEAR TO THE SEPARATION POINT
6-1. The skin friction

The skin friction u[du/dy],_, is related to [du,/dy,], -, by equations (17) and (18). Now

n=0
2 2 2
(9ul) %gl:afo 3f1 _I_gzafz +§3af;s+ ] (178)
y1=0 7=0
and by substituting the solutions for f,(7), this can be written
(aul/a.’/l)y1=0 = 2%[oclx%+oc2x%+oc3xl+ (“44‘%‘“1“2%2%) x%+] (179)

The numerical values for «,, #; and a, can be obtained from equations (66), (77) and (124).
Hence it follows that

(0uy/0y,),,—o = 2oy 44 + 177848024} + (3-3110203 — 0-7333002 V) #,
+(7-1573at—2-6083a3 Vy+0-125603 V2) 2§ +...].  (180)
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76 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

6-2. The velocity distribution near to the separation point

From equations (42) and (43), the velocity distribution in the neighbourhood of the
separation point is given by

=5

U = EOQHQZ/TQ (181)

provided higher-order terms are negligible. The q, ., are given by

2la, =1,

Blay = —W,

4la, = Vi—4a,

5lay = —Vy(V3—12a2) —16-2234a3,

6!ag — — 2P —42-8273at — 2402 V2 63-09123 V4 V&,

Tla, = — 44705+ TP, V,+474-66a} V) — 152-27a} VE-+ 4022 V3 — V2 + 5V].

(182)

It is interesting to note that when a, = 0, then by relation (34), equations (182) reduce to
equations (15).

7. THE FUNCTIONS f5(5) AND f,(7)

From equations (67) and (77)

: 2L 30
Ss(n) = o fy on) +ad Vo2 1 () + 5o V3774—”*§!0la (183)

s
where a3 [y, 0(n) = ;—166(—17) 5 (35— 8,2%)a§,72+4a1a277—%a5;(1+%774)+‘§‘“?/€3,l (184)

“%fs,l( ) = 300‘177 — %0, S—1dadpl.

The values of the functions f; ((7) and f; ;(7) and their first derivatives are given in table 1.
From equations (78), (77) and (124)

Sin) = $P (P —ksn’) Fod fi o(n) +adVo 2y 1 (n) +ad VESi o(n) — o VE2I® + 155 Vi

(185)
where
25. 24t m(35—8.2}) aa )
“Tﬁ,o(’?) == 14(1) t— 400(11)6 ! 2} n?—3aia,nt+8afayk,
m3(35—8.2%) at ,

el PSSy gt o),

b (186)
73(35—8.2) adpd ,
061f4 1 (7 ) = Eaj 3’75*“ 1200(%!))6 1 “%dldzﬂ“*Flﬁa “‘”24-70&?[477%4“772/53];
13.2¢ 782
o fa,2(n) = —vo5edn’ +ooant +Etain’ + - 7‘5@('17)*17"- )

The values of the functions f; (1), f;,1(7) and fy ,(7) and their first derivatives are given in
table 2.
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78 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

II. A NUMERICAL SOLUTION OF THE LAMINAR
BOUNDARY-LAYER EQUATIONS

8. INTRODUCTION

In the following sections, a method will be presented for the numerical solution of the
laminar boundary-layer equations in the general case with suction so as to enable the
solution to be carried step-by-step from the leading edge to the separation point. The
previous work which indicated the presence of a singularity at separation will first be
discussed.

Hartree (19394) considered a linearly retarded mainstream velocity U(x) = 1 —4x for
flow over an impermeable surface, so that v (x) = 0. The numerical results suggested that
there was a singularity at the separation point because of the behaviour of the skin friction
in the neighbourhood of that point and because of the breakdown of the process of integra-
tion when an attempt was made to carry it past the separation point. Goldstein (1948) then
constructed an asymptotic solution for the immediate neighbourhood of the separation
point which has since been modified and extended by Stewartson (1958). A numerical
comparison of the solutions of Hartree and Goldstein by Jones (1948) indicated there were
no serious discrepancies. Leigh (1955) used an automatic computer for a more accurate
investigation of the same case as Hartree, namely U = 1—}x, v(x) = 0. He confirmed
Hartree’s conclusions and obtained agreement with Goldstein’s asymptotic solution.
Further evidence of the existence of this singularity is that methods of expansion in series
(Howarth 1938; Ulrich 1943; Bussmann & Ulrich 1944; Gortler 1955) have not been
found to converge in the neighbourhood of the separation point. It is desirable to find
whether similar behaviour is encountered in the case of suction and to see if this behaviour
agrees with the asymptotic solution that has been obtained earlier.

Leigh has shown it is possible to use an automatic computer to obtain the velocity
distribution near the separation point. He took the boundary-layer equation in the form of
equation (1) and used a method where given the velocity distribution at a cross-section
x = x;, the velocity distribution at a cross-section x = x, further downstream could be
obtained. The most serious difficulty in using the equation in the form (1) is that, in
general, this method cannot be started from the leading edge or forward stagnation point.
Thus it is necessary to calculate the velocity distribution at a certain distance downstream
which would probably be done by a series method. As well as extending the numerical work
to include suction, it seemed desirable to produce a method of obtaining the velocity
distribution at any cross-section starting from that at the leading edge for any external
velocity distribution and for any distribution of suction. This method will be seen to lead
to a number of other advantages.

9. THE PARTIAL DIFFERENTIAL EQUATION TO BE NUMERICALLY INTEGRATED

A transformation due to Gértler (1955) is applied to the boundary-layer equation. The
velocity potential of the outer flow is
¢=[ U)dx, (187)
Yo
where x = 0 is the leading edge of the surface.
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 79

Independent variables are taken as

¢ Uy
where U, and [ are a suitable reference velocity and length respectively.
The stream function ¢ is taken of the form

v = (209} f1E 1) (189)

and the velocity components become

" = ‘7{; (190)
o=~ () Olrreedr -1, (191)
where p=pe) =24, (192)

When the velocity components are substituted in equation (1), the laminar boundary-
layer equation becomes

3 2 p— (L)) = 2oL 25T, (193)

dn oy dndE~ 9Eoy?

This equation could also have been obtained from an equation derived by Piercy, White-
head & Tyler (1948). However, Gértler’s approach shows that it is unnecessary to find the
whole outer potential flow in advance since the only property needed is the velocity
distribution U(x) at the outer edge of the boundary layer.

The boundary conditions (5) and (6) become

)
L) =o, 194
(077 7=0 ( )
J 26U\ *
J1& 0)+ 253 716,0) = (32 v(9) = K,(8), (195)
where K (£) is a non-dimensional velocity of suction in the (§,7) co-ordinates, and as
ul Jf
n >0, 3—5——>1, ar——>() (r>1). (196)
At the leading edge, £ = 0, equation (193) becomes
3 d? d
df+f f+p’(0){1-(—f) |-, (197)
with boundary conditions: at =0, df/dyp =20
. 3
and 710 = tim| 464 [ £ K, () d |
0 0
(198)
= lim [ (26)7F[ 0,(v) dx |
x>0 0
as 7 —>o0, df/dy— 1.

10 Vor. 253. A.
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80 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

Equation (197) with the boundary conditions (198) can be regarded as a special case of
the equation of similar profiles, namely

3 4z d 4z
s (v o
where «, f and y are constants with boundary conditions
at 7=0 f:»af:O and as 7 —+>o gJ—F—>l (200)
bl a” b d” ¢

Numerous solutions of the equation of similar profiles have been obtained by Schlichting
& Bussman (1943), Thwaites (1949), Brown & Donoughe (1951), Hartree (1937) and the
author (§16).

The method of solution will be such that given df/dy at the cross-section £ = ¢, then
df]0n at the cross-section § = £, can be obtained. Thus it can be started at the leading edge,
and, in fact the initial distribution of 9f]dy is given by a solution of the equation of similar
profiles.

This form of the laminar boundary-layer equation has several other advantages.
First, the boundary-layer thickness changes slowly in terms of the 5 variable as compared
with the y variable. Secondly, as the iterative procedure uses the function df/dy which
satisfies the condition 9f/dy — 1 asy —co for all &, it implies that only the inner part of the
boundary layer requires correcting.

Another difficulty in using the form (1) was found by Hartree (1939a). He observed
that there were two alternative replacements for dp/dx, namely, either

[( (] (20

pe—p1 _ 3(UE-UY)

or
X ”‘xl (xg—2x,)

(202)

where the suffixes 1 and 2 denote the step from x, to x,. At the surface, (201) appears to be
the correct replacement but as 7 o0 (202) becomes the right expression to use. In the
case of the linearly decreasing mainstream velocity U == 1 —}x used by Hartree (19394)
and Leigh (1955), these two approximations become identical but this will obviously not
be true in general. Hartree (19394), in treating Schubauer’s observed pressure distribution
for an elliptic cylinder, used a suitable combination of these two expressions. The term in
equation (193) corresponding to dp/dx is £(£) and this is multiplied by a term {1 — (df/dn)%}
which tends to zero as 7 - c0. Thus the difference between replacements corresponding to
(201) and (202) is negligible as # — oo so that the required approximation is

Lreh-G) ), b= T (208

10. METHOD OF SOLUTION

Equation (193) can be rearranged as

it [ areegd) ans k@) 205l - —p -, (204)
where g = 9f)dy. (205)
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FLOW NEAR SUCTION WITH AND WITHOUT SUCTION 81

An appropriate method for the solution of certain types of parabolic partial differential
equations was proposed by Hartree & Womersley (1937) and has been found to lead to a
stable numerical process. In this derivatives in the £ direction are replaced by differences
and all other quantities by averages.

Thus equation (204) becomes

L+ B e

FHEE) +EEN 5 (P + 5 - B (400 Harta)

—3[A(6) (1 —g8) +4(&,) (1—gd)], (206)

where the suffixes 1 and 2 denote the values of the functions at the cross-sections § = £,
and § = ¢, respectively. It is supposed that ¢, is known so that ¢, is determined from this
equation. Following a similar method to Leigh (1955), take

v =g1+q5 (207)
then equation (206) becomes
Gt [ GorAo—20))dr+ 1K)+ K (@) | G —-A0—20)
—A(&) (1—¢8) —F(E) {1 —(v—q1)%, (208)
where A= (£1+£2)/(€2“‘£1)- (‘209)

The boundary conditions (194) and (196) become
at =0, v=0; as g—>00, v—>2. (210)

(208) is a third-order non-linear differential equation for v which will be solved by an
iterative process. If v defines the mth iterative approximation to the solution of this
equation then »™*D is given by

d2ym+1)

o[ - 220+ K6 + K6 | A+ D— 2 o0

—B&) (1 —¢8) —FE) {1 — (=)} (211)

A rectangular mesh of dimensions {(x,—x,), 2} is now formed by introducing differences
in the p-direction. If the suffix j refers to the jth mesh-point in this direction, equation (211),
after rearrangement, becomes

(g%)) — A+ D +[ ) f St d?}] (dv(’"))
=—pB(&) (1—q} ;) —B(E) {1 — (V" —qy,;)% — 2Aq, ;05
+[2Aﬂhql dp —H{K, (&) + K, (£>) }] ( ) (212)

10-2
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82 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
The following approximations are now made
d2ym+ ) 1
{—d;r}] — ﬁ{v]@zil—l)__zv&mld)_*_vj(jo l)} -+ O(l),
d”(m)} Lo _ yom
= = — o™ O(h),
(], = aptim—umd o) o)

]‘h
J v(m+1)d77 — h{v(1m+1)+v(2m+ 1)+ . _|_ vyﬁ-}l l)+ %1;(.’"‘“)} + 0(/13),
0

J
j h

. g, dp = h{41,1‘|’91,2‘|’ ---+£71,j~1+?1291,j}‘f‘0(h3) = h(sl,j’li‘o(/le');

and equation (212) becomes
quzjil)__ 21};"1-1-1) + U}’—"—J{ l)h/thUj(_m)v}m+ 1)+ (% + /1) %h?(v;ﬁ)l "Uﬁ'@x)
X (v(lm+ D 4 U(2m+ D + vy?ivli 1) + %vyn-lf 1))
=—Wf(&)) (1—qi ;) —h*B(E) {1 — (v —qy, ;)% — K (&) + K (&)}
X (”]('T)l — ™) — 20 h2q 1,j v ’111231, j (”1('72)1 =), (214)

so that vﬁnrli 1) +A§m) v}m+ l)+ (1 +aj(m)) vﬁniqil) + Oénz)(vj(rfvg l)+ e 7}(lerl)) — C'J(m)’ (21 5)
where g = J(1+24) (o —oimy), |
Aﬁm) _— Ah20§m) + %a§m)’ l> (21 6)
and  CF"=—h(E,) (1—q8;) —AB(E,) {1 — (0 —q, ;)% ]
— K () + K (Eo)} () — ™)) — 2A%q, ;0™ + ARP0, (v — ™).

Since v = 0 at 5 = 0, the first equation is
VgD Ayt D — O, (217)
It is assumed that the Nth mesh-point in the 7-direction is sufficiently far from the surface

for the outer boundary condition to be satisfied to the required accuracy beyond that point.
Then {4+l = 2 and the Nth equation becomes

AV D 4 (1 4a§P) oD 4 a@P (0§t P L oY) = O —2, (218)
The set of simultaneous linear equations (215), (217) and (218) can be written in matrix
form A yim+1) — Cm), (219)
where v+ s the column vector {v§m+D, o+ 0, ot D}
G is the column vector {C{™, C{™, ..., C{",, C{P —2},
and A s the matrix
A 1 0 0 0
1o A 1 0 0
am 14af AP 1 0
oc%m) oc%’”’ 14afm A%’"’ 1 - - s (220)
A, 1 0
asm o v AL 14, A, 1
ol al? T afm 1+afpm A

The problem of finding v*V will be solved by treating the more general problem of finding
the inverse of the matrix A™,
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 83

11. INVERSION OF THE MATRIX

If there are N intervals A contains N2 elements, but to determine the matrix completely
only the 2N values of Ay and o™ are required. Thus the storing of the elements of A
presents no problems. Since the matrix A™ is very nearly lower triangular it would appear
that the best method of obtaining a solution is to put (219) into the form Lv+D) — Cm*
where L is a lower triangular matrix and G™* is a column vector. Then the inversion of
L is a simple procedure.

A method similar to this was first tried. »{"*is treated as an unknown and, by successive
substitution in equations (217) and (215), v§"+D, o{m+D .. o+ in that order, are found
in terms of v{"*P. Then »{"*? is determined by equation (218) and hence all the v+,
However it appeared that although the first value v{"*? was excellent and the first few
values of v{"*V were very good, the difference between v{"*1 and its expected value increased
with j at an alarming rate. Reducing the size of the interval in the £ direction only had the
effect of increasing this deviation further. This is similar to the behaviour encountered by
Hartree (1939a) when, using a step-by-step method of integration, he found that his
solution was very sensitive to small changes in the initial conditions at the surface.

How this behaviour arises in this method is clear. Suppose that Ais large, which if £, = 0,
is equivalent to £, —¢&, small. Now o7V is determined from (v{"*D ... v{"+V) and, from equa-
tion (215), this is the difference between two terms involving A. If 1is large, these two terms
are relatively large so that their difference will lead to errors. Further, if there is an error
¢; in vf"*1, it can be seen from equation (215) that the error ¢, introduced into v{{? is
[2+ A% — (1 +24) R2(vf™ — ™)) ] € so that e, > (1+Ak?) ¢, for large j and in the outer
part of the boundary layer, where v/ = 2 > (s —v™,), this error = 2(1+1k2)¢,. Thus
the error produced grows rapidly as j increases. Itisanalogous with what occurs in some of
the solutions of the equation of similar profiles (equation (199)). In these small changes
in f”(0) cause large changes in f'(5) as n —co and a method of overcoming this is to inte-
grate back from infinity. A similar method is applicable here. Then if " is found in terms
of (vl ... v§r+D) it is to be expected that the values of v{"*1 will be accurate and, further,
that they will become more accurate as A increases. This is done by transforming the matrix

equation (219) to the form

where U™ is an upper triangular matrix which can be obtained by Choleski’s method
(Hartree 1952).

The matrix A™ is resolved into the product of a lower triangular matrix L™ and an
upper triangular matrix U™ where

1 0 0 w, 1 0
Lom— |t 1 0 and Um—| 0 # 1 0 ..} (222)
CTCTS

Then, from equations (219) and (221),

Cm* = (L m}~1 Clm (223)
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84 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
and the elements of G™* are given by
r—1
C(lm)* — Cgm)’ Cﬁm)* . C;m _jgllrj C](m)* (2 <] < N) (224)
The v{"*V are given by equation (221) so that
(m)sk (m)% __ ,(m+-1)
Wt — QLL_, oD — CJ_;_*l{J.ﬁLL (1<j< N-1). (225)
N, N Ui

The solution confirmed that the values of »{"*! obtained by this method were good and
their accuracy increased as A increased. It is interesting that a matrix so very nearly lower
triangular had to be transformed to an upper triangular matrix so that a well-behaved
solution could be obtained.

12. PROGRAMMING

The program has ideally been written for an accuracy of four to five decimals in q.
Obviously a solution for fewer decimal places may be obtained, but in this case a smaller
program would be adequate. The integration is carried out using an initial estimate of
2q, ; for v} in three stages, namely

(i) for an interval # = 0-2 where 7 takes the values

7= 0-2(0-2) 6-4;
(ii) for an interval 2 = 0-1 where 7 takes the values
7 = 0-1(0-1) 6-4;
(iii) for an interval 2 = 0-05 where 7 takes the values
7 = 0-05 (0-05) 3-2.

A truncation error arises from using a finite interval in the #-direction and its leading term
may be removed by Richardson’s 42-extrapolation. Ifv, is the value obtained by integrating
at an interval 4 and v,, is the value at an interval 24, then Richardson’s A2-extrapolation
gives a better solution as v, = v, +%(v,—v,,). The outer limit of # = 6-4 was taken because
it was expected that at that point the outer boundary condition would be attained to the
required number of decimal places (four or five) for all cross-sections from the leading edge
to separation. The results from (i) and (ii), after A%-extrapolation, gave a solution for ¢, in
the range 0-1(0-1) 6:4 and the values for the range 3-2(0-1) 6-4 were to the required
accuracy (six decimal places). These also gave the outer boundary condition v(3-25) at
n = 3-25 for routine (iii) in which the right-hand side of equation (218) and the last element
of C™ are replaced by C{ —v(8-25). The results from (ii) and (iii), after 4%-extrapolation,
gave the solution for ¢, in the range 0-05 (0-05) 3-2 and these were checked with those
obtained from (i) and (ii) in this range. By this method it was found that the error due to
using a finite interval in the -direction was negligible. Also since there is very little difference
between routines (ii) and (iii), it is simple to adapt one routine for them both.
Richardson’s A2-extrapolation only removes the leading term in the truncation error
and in the neighbourhood of the separation point, in the {-direction, the coefficients of
higher-order terms are large so that it does not remove the largest term in the error. Thus
it was not used in the {-direction and the error was kept small by halving the interval and
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 85

ensuring that the results for the full interval and for the two half-intervals agreed to the
required number of decimals. This was found to be completely satisfactory.

The function 4, given by equation (209), is important in determining the convergence of
the solution. As pointed out earlier, decreasing the step in the §-direction increases A and the
accuracy of the results. It is also found that when A increases the iterations converge more
speedily. The average number of iterations required for an accuracy of six decimals was
about five for each routine but in the neighbourhood of separation these increased to six,
eight and ten for (i), (ii) and (iii) respectively. Near separation the number of iterations
could be reduced by using better estimates for o{*—either by extrapolation from the previous
steps or by using the solution obtained from (i) for routines (ii) and (iii). However it was
found that the number of iterations was only slightly reduced near separation and that
0 = 2¢, ; was the best estimate near the leading edge so that for simplicity this estimate
was used throughout. The time for a complete checked step from £, to £, was about twenty
minutes. The whole program has been written so that if the routines associated with the
particular problem have been inserted and given the distribution of ¢ at the leading edge
and the first step, the program will automatically carry on to the separation point. How-
ever, as this takes a long time, a facility for outputting the distribution of ¢ at the end of
every step has been inserted so that the program may be conveniently restarted.

The difficulty of starting at the leading edge has not completely disappeared since when
£, = 0 equation (209) gives A = 1. Thus in taking a step from the leading edge the error
cannot be reduced by halving the interval. This difficulty is overcome by starting away
from the leading edge at a cross-section § = £ where the distribution of ¢ is the same as that
at the leading edge to the required number of decimal places. If there is a known series
solution, the position of {, may be obtained by considering the magnitude of its terms.
Alternatively a large step may be taken from { = 0 and the magnitude of the change in ¢
estimated so that a position can be calculated for a negligible change in ¢. Both these
methods worked well. The first step from §, will, in general, be small but it was found that
successive steps increased by a factor of 2 or 3 so that the solution is soon away from the
leading edge. Itremains to consider the particular routines required for anyspecific problem.

13. ROUTINES REQUIRED FOR A PARTICULAR BOUNDARY-LAYER FLOW
If the mainstream velocity U(x) is given by
U(x) = Uof(x'), (226)
then the relations between the co-ordinates (£, #) of Gortler’s equation and the non-dimen-
sional co-ordinates (x’,y’) usually associated with the boundary-layer equation are

Y A I (CONN W
E=[ Sy =g), =7 )y (227)
The only other functions in equation (215) that require determination are £(§) and K (&).
From equations (192) and (227), f(£) is given by
_ 2(¢) d{f(x)}/dx’
Ié)(g> - [f(x/)]z s (228)

and, from equations (195) and (227),

K = 20 ). (229)
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86 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

Clearly the functions £, £(£) and K (£) that are required in equation (215) can be obtained
from equations (227), (228) and (229). Since, in the numerical solution, when the step in
& is halved it is desirable to find &', the routine for the inverse function x" = g=1(£) is also
wanted. Thus for any boundary-layer flow only the routines for &, f(§), K,(£) and g~1(§)
are needed. In the case of symmetric flow past a circular cylinder which will be considered
later, if the external velocity distribution is given by U(x) = U,sina’, the subroutines
required are

&=1—cosx/, f(E) = sec?ix’ cos x',}

. (230)
K (€) = v,(x') secga’,  g7!(x") =sin~! (x').

A routine has been included in the program to compute 0%//dy? at 5 == 0, the displacement
thickness 4, and the momentum thickness d,. The value of (9%f]d5?),_, is obtained by using
finite differences for ¢ near # = 0. The displacement thickness §; and momentum thickness
d, are

(i *@zﬁ‘r( T
81 WJO (1 U) dy - U 0 : 37] 7, (231)
© _ (2¢v)* f af ( I )
1— EO Y (L 232
J. 0 ( ) U 0 07 an 7 ( )
The integrals in equations (231) and (232) were evaluated by using the Euler~Maclaurin

formula given in equation (163). For the interval 4 = 0-05 and for an accuracy of five deci-
mals these reduced to

f:( 3f)d77——%h[1+2(1——f]1H e 2(1—¢p )+ (1—¢,)] - 1h2(§/;)n g (233)

[ o (1) = 4020 =) 210, (1 g () (2

As (9%f]9n?), - has already been evaluated, it is simple to obtain the values of these integrals.
In the cases considered, the accuracy of the results was checked by the momentum

equation which is
Ty A%y (0,420,)dU | 1 (Ut ‘
i dx+ T dx *U{( ; ) ?W)}’ (235)

where 7, is the skin friction given by

A, ) G, =

Then dd,/dx’ can be obtained from equation (235) and compared with the results for d,
as a function of &". It should be noted that when U(x) is nearly zero the value of dd,/dx’
obtained from equation (235) will not be accurate. This explains the errors in the values of
dd,/dx" near the leading edge given in tables 4 and 8.

To summarize, a program has been written to carry the solution of the laminar boundary-
layer equation from the leading edge to the separation point in which for any particular
flow only: (i) the subroutines for £, #(£), K¢(£) and g=(£), and (ii) the solution of the equation
of similar profiles for the distribution of ¢, at the leading edge and the initial step from &,
to &, are required.
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14. THE POTENTIAL FLOW PAST A CIRCULAR CYLINDER WITH CONSTANT SUCTION
14-1. The numerical results

The potential flow past a circular cylinder with mainstream velocity U = U;sinx’ and
non-dimensional velocity of suction »,(x) = 0-5 was chosen because the results could be
compared with those obtained by Bussmann & Ulrich (1944).

The solution was taken so that g,; was accurate to four decimal places after each
step. This accuracy was determined by ensuring that the solution at the full interval and at
two consecutive half-intervals in the {-direction had a maximum difference of less than
+5x1075. However, as the value from the integration at the half-intervals was taken,
it may be presumed that the maximum error in ¢; due to a finite step is 1075, Thus although
itis to be expected that the error would build up after alarge number of steps had been taken,
nevertheless after estimating the errors from all these steps, it appears that g; should be
accurate to four decimal places at separation. This accuracy has been obtained without
assuming anything about the solution becoming more accurate as the separation point is
approached due to the smoothing out of irregularities. It was noted earlier that the solution
must not be started from the leading edge and the first step taken was from x} = 0-01 to
x5 = 0-02.

Some of the results for (df/dy) at typical cross-sections have been given in table 3. These
have been given in the co-ordinates (x',7) as they are convenient for tabular form. The
velocity u at (x',7) is given by U(df]dy) = U,sinx’'(df/dy) and the factor sinx’ has been
tabulated beneath the table. The co-ordinate # can be converted into the non-dimensional
boundary layer co-ordinate ' by multiplying by the factor y’/y = sec 4x’, which has also
been tabulated below the table.

The values of (du/dy’),.—o, &), 05, H = 6,/d, and dd,/dx" obtained from the momentum
equation are given in table 4. All the values have been included so that the number and size
of steps taken can be seen.

The position of separation obtained was 114-7°, whereas Bussman & Ulrich gave 120-9°.
To check the solution and to see why there is such a large difference in the position of the
separation point, the values of (du/dy’),_, and d, obtained by the two methods have been
compared.

Bussmann & Ulrich gave a series expansion for (du/dy),.,:

(0ufdy),—o = 1-5418x — 0-5303x3 1 0-054525 — 0-00316x7 -+ 0-00004406x°,  (237)

and for 4, :
8, = (1/sin x) {0-5419x — 0-0012x% + 0-00419x% — 0-000691x7 - 0-0001351x°}  (238)
(where the prime denoting non-dimensional ¥ and y has been and, henceforth, will be
omitted). The coefficient of ¥’ in equation (238) appears to be in error; this term should

read +0-000697x7. By substituting for x, the values of (du/dy),_, and d; have been found
and compared with those given in table 4:

x (in radians) 0 0-4 1-0 1-5 1-89

(Ou/dy) ,=p (computed) 0 0-5833 1-0629 0-8833 0-3507
(), (B. & U.) 0 0-5833 1-0629 0-8845 0-3895
0, (computed) 0-5423 0-5570 0-6499 0-8684 1-4167
4, (B. & U., corrected) 0-5419 0:5566 0-6485 0-8599 1.2822
0, (B. & U., uncorrected) 0-5419 0-5566 0-6468 0-8360 1-1573

11 Vor. 253. A.
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TABLE 3
\< 0 06 1-3 15 1-69 179 1-89 1-94 1-988 2.0005 2-00163%
n

0-05 0-0749 0-0734 0-0651 0-0593 0-0503 0-0429 0-0320 0-0239 0-0114 0-0042 0-0018
0-10 0-1455 0-1427 0-1271 0-1163 0-:0994 0-0856 0-0649 0-0494 0-0255 0-0117 0-0069
0-15 0-2119 0-2080 0-1861 0-1711 0-1473 0-1278 0-0985 0-:0766 0-0423 0-0223 0-0154
0-20 0-2742 0-2694 0-2423 0-2236 0-1940 0-1696 0-1329 0-1052 0-0615 0-0359 0-0268
0-25 0-3327 0-3271 0-2957 0-2739 0-2394 0-2109 0-1678 0-1351 0-0830 0-0521 0-0412
0-30 0-3874 0-3812 0-3463 0-3220 0-2836 0-2517 0-2031 0-1660 0-1066 0-0709 0-0581
0:35 0-4384 0-4318 0-3942 0-3681 0-3264 0-2917 0-2387 0-1979 0-1320 0-0919 0-0776
0-4860 0-4791 0-4395 0-4120 0-3679 0-3311 0-2744 0-2305 0-1590 0-1151 0-0992
0-45 0-5304 0-5232 0-4823 0-4538 0-4080 0-3696 0-3101 0-2637 0-1874 0-1401 0-1229
0-50 0-5715 0-5642 0-5227 0-4936 0-4467 0-4071 0-3456 0-2972 0-2169 0-1667 0-1484

A
<
'S
=

/

v &

— 0-60 0-6451 0-6378 0-5962 0-5670 0-5195 0-4791 0-4154 0-3646 0-2788 0-2240 0-2039
< >_‘ 0-7 0-7079 0-7009 0-6609 0-6326 0-5862 0-5464 0-4828 0-4314 0-3429 0-2852 0-2638
>" 0-8 0-7611 0-7546 0-7173 0-6906 0-6467 0-6085 0-5469 0-4963 0-4076 0-3487 0-3266
o [_‘ 0-9 0-8060 0-8000 0-7660 0-7416 0-7009 0-6652 0-6069 0-5583 0-4716 0-4129 0-3907
Qf‘ E 1-0 0-8434 0-8382 0-8078 0-7858 0-7490 0-7163 0-6622 0-6166 0-5335 0-4763 0-4545
1-2 0-9002 0-8962 0-8733 0-8565 0-8278 0-8019 0-7579 0-7197 0-6478 0-5964 0-5764
R U 1-4 0-9381 0-9353 0-9190 0-9069 0-8860 0-8667 0-8331 0-8031 0-7448 0-7017 0-6846
I O 1-6 0-9627 0-9608 0-9499 0-9416 0-9271 0-9135 0-8892 0-8671 0-8225 0-7885 0-7747
F v 1-8 0-9782 0-9770 0-9700 0-9646 0-9550 0-9459 0-9293 0-9137 0-8814 0-8560 0-8455
i 2-0 0-9876 0-9869 0-9826 0-9793 0-9732 0-9674 0-9565 0-9461 0-9238 0-9058 0-8983
<z 22 0-9932 0-9928 0-9902 0-9882 0-9846 0-9810 0-9742 0-9676 0-9530 0-9408 0-9356
E (o) 2-4 0-9964 0-9961 0-9947 0-9936 0-9915 0-9894 0-9853 0-9812 0-9720 0-9642 0-9608
= 2:6 0-9981 0-9980 0-9972 0-9966 0-9954 0-9942 0-9919 0-9895 0-9840 0-9791 0-9770
=3 L-) W 2-8 0-9991 0-9990 0-9986 0-9983 0-9976 0-9970 0-9957 0-9944 0-9912 0-9883 0-9870
8 <0 3-0 0-9996 0-9995 0-9993 0-9991 0-9988 0-9985 0-9978 0-9971 0-9953 0-9937 0-9929
@) ‘2 32 0-9998 0-9998 0-9997 0-9996 0-9994 0-9993 0-9989 0-9985 0-9976 0-9967 0-9963
= 34 0-9999 0-9999 0-9999 0-9998 0-9997 0-9997 0-9995 0-9993 0-9988 0-9983 0-9981
T é 3:6 1-0000 1-0000 0-9999 0-9999 0-9999 0-9998 0-9998 0-9997 0-9994 0-9992 0-9991
B = 3-8 1-0000 1-0000 1-0000 1-0000 0-9999 0-9999 0-9999 0-9999 0-9997 0-9996 0-9996
4-0 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 0-9999 0-9999 0-9998 0-9998
sin x 0 0:5646 0-9636 0-9975 0-9929 0-9761 0-9495 0-9326 0-9143 0-9091 0-9086

sec ix 1 1-047 1:256 1-367 1-506 1-599 1-707 1:769 1-834 1-852 1-853

TABLE 4
x (radians)  (0u/9y)y— 4, -0, H do,/dx x (radians) (0u/0y),= o, 0, H dd,/d
0-015000 0-0231 0-5423 0-2497 2172 0-0096 1790000 0-5264 1-1917 0-4938 2-413 0-525
0-020000 0-0308 0-5423 0-2497 2172 0-0090 1-844575 0-4354 1-3002 0-5248 2-477 0-610
0-030000 0-0462 0-5425 0-2497 2:172 0-0026 1-890000 0-3507 1-4167 0-5545 2-555 0-697
0-060000 0-0924 0-5426 0-2498 2-172 0-0069 1-917070 0-2946 1-5035 0-5742 2:618 0-758
0-091211 0-1402 0-5431 0-2501 2-172 0-0071 1-940000 0-2422 1-5930 0-5923 2-690 0-817
0-120000 0-1841 0-5436 0-2503 2:172 0-0105 1:954860 0-2046 1-6625 0-6047 2-749 0-859
i 0-200000 0-3041 0-5459 0-2513 2-173 0-0165 1960000 0-1906 1-6897 0-6091 2-774 0-874
- < 0-315750 0-4703 0-5514 0-2537 2-174 0-0264 1-970000 0-1617 1-7482 0-6181 2-829 0-906
0-400000 0-5833 0-5570 0-2562 2-174 0-0332 1-979978 0-1292 1-8178 0-6273 2-898 0-940
- 0-600000 0-8147 0-5767 0-2647 2-178 0-0530 1-988000 0-0987 1-8869 0-6348 2-972 0-970
< >_‘ 0-695921 0-9029 0-5895 0-2704 2-180 0-0638 1-991497 0-0833 1-9234 0-6384 3-013 0-984
>" 0-790000 0-9727 0-6048 0-2769 2-184 0-0758 1-994000 0-0709 1-9535 (-6407 3:049 0-994
O F 0-899408 1-0315 0-6260 0-2862 2188 0-0920 1-996499 0-0567 1-9885 0-6433 3-091 1-:004
m = 1-000000 1-0629 0-6499 0-2962 2-194 0-1094 1-998000 0-0468 2-0135 0-6447 3-123 1-010
— 1-079123 | 1-0719 0-6718 0-3055 2:199 0-1251 1-:999499 0-0350 2-0440 0-6462 3:163 1-017
= U 1-150000 1-0680 0-6945 0-3149 2205 0-1414 2-000000 0-0302 2-0563 0-6469 3-179 1-019
,.I’_.: O 1-226013 1-0511 0-7223 0-3264 2-213 0-1616 2-000900 0-:0196 2-0840 0-6477 3:218 1-023
= u 1-300000 1-0222 0-7538 0-3392 2:223 0-1845 2:001400 0-0108 2-1074 0-6483 3-251 1-026
1-350716 0-9953 0-7782 0-3490 2-230 0-2025 2-001437 0-0097 2-1103 0-6483 3-255 1-026
:tl ‘2 1-400000 0-9637 0-8047 0-3594 2-239 0-2222 2-001470 0-0088 2-1125 0-6483 3-258 1-026
(@) 0o 1-450152 0-9261 0-8348 0-3712 2-249 0-2448 2-001530 0-0070 2-1176 0-6484 3-266 1-027
E - 1-500000 0-8833 0-8684 0-3840 2-261 0-2704 2-001565 0-0056 2-1210 0-6484 3-271 1-027
-5 5 ' 1-550026 0-8350 0-9065 0-3982 2-276 0-2998 2:001600 0-0039 2-1257 0-6484 3-278 1-027
© <0 1-600000 0-7814 0-9499 0-4141 2-294 0-3338 2-001608 0-0034 2-1270 0-6484 3:280 1-027
8 (7] 1-649901 0-7225 0-9997 0-4318 2315 0-3731 2-001615 0-0029 2-1283 0-6484 3:282 1-027
— Z 1-690000 0-6711 1-0455 0-4475 2:336 0-4096 2-001630 0-0015 2-1321 0-6484 3-288 1-027
E é 1-744734 0-5969 1-1151 0-4698 2:373 0-4654 2-001635 0-0007 2:-1341 0-6484 3-291 1-027
-y ]
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 89

It can be seen that agreement is very good in the region from the leading edge to about
70° (x = 1-2) but then the results become widely different. At x = 1-89, (du/dy),_, given
by (237) is

(au/ﬁy)yzo = 2:9140—3-5802+1-3143 —0-2722+0-0136 = 0-3895, (239)

and clearly from the magnitude of these terms, the difference can be accounted for by
noting that there are too few terms in the series (237) and (238). Bussmann & Ulrich
estimated the position of the separation point by putting (du/dy),_, = 0 in (237) but if
there is a singularity at separation, it is doubtful whether the series converges near separa-
tion. However, even if the series does converge, there are not enough terms in (237) to
determine the separation point accurately. Finally the check on the momentum equation
by Bussmann & Ulrich was very good up to about 80° (x = 1-4), but from there to
separation it became progressively worse. If dd,/dx is calculated from the values of d, in
table 4 and compared with the values obtained from the momentum equation, it is found
that there is excellent agreement for all positions to separation. Thus the check implies
that the results are very accurate and that the method has worked well. The flow in the
upstream neighbourhood of separation will now be considered in greater detail.

14-2.  The solution near separation

From equations (16), (17) and (18), for the external velocity distribution U = Ujsin x,
dp,/dx, is given by

d __ydt __ UdUjdx | sin2x (240)
dx, dx, U,dUg/dx sin 2x
and this can be written
dp,/dx, = —cos (2%, tan xg) —cot 2x, sin (2%, tan x;). (241)
Then from equation (20), the P, are given by
R
In particular Fy=1, P =1—tan?x,. (243)
From table 4, the position of separation is
xg = 2:00164 radians. (244)

The asymptotic expansion for the velocity gradient in the neighbourhood of the separation
point has been given in equation (180).
Now V;, x, and du,/dy, are given by

Vy = vy( —sec xg)t = 0-77377, (245)

PRl _2:00164—x
1" (—tanxg) 217562 °

(246)

Ju, 1 "5‘u)
dy, E 24
and 0y,  sinxg(—cosxg)? (0y (247)

11-2
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90 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
respectively. Substituting into equation (179)
1 ((?u

) = ooy Fagad + (@, 20 0, V28 xi ... (248)
y=0

(8sinxg)? (—cos xg) (xg—x)* dy
and after substituting the numerical values of the coeflicients this reduces to
0' ]. 1 (? 1
088811 (_”) — a,+1-464403(2:00164 —x)*
(2:00164 —x)* \dy/ o

+ (2:244803 — 0-384702) (2-:00164 —x)*
+(3-9951a — 1-1241a3 + 0-042002) (2:00164 —x)i+.... (249)

The numerical solution can be compared with the asymptotic solution by substituting
for x and (du/dy),—, at points in the upstream neighbourhood of separation. From this
comparison, a value for a; can be obtained and equation (249) was programmed on the
machine so as to determine ;. In table 5, the second column gives the value of the left-hand
side of equation (249) and the succeeding columns give values of the right-hand side when
o, is 05, 0-55 and 0-6.

Hence equating the left- and right-hand sides of equation (249)

o, = 0-5550-005. (250)

In figure 1, (du/dy),_, has been plotted against (¥;—x) for the numerical results and for
equation (249) when a; = 0-5, 0-55 and 0-6. This clearly shows the agreement between
the numerical results and the asymptotic solution near to separation.

Another comparison between the numerical solution and the asymptotic solution is
possible by considering the velocity profile near separation. The velocity distribution close
to separation has been given in equations (181) and (182) so that

0 4
0o (U) =30 -

r=0
where the a,,, are given in equation (182). The term a,y{ has been omitted since a; is

complicated and the terms in (251) are sufficient to determine a; to two decimal places.
When x, is small, the neglected terms in (251) arising from F;(7) and Fy(y) are dominated by

110t fsyinx;. (252)
Since the value of f#; with suction has not been obtained, the value of f; without suction
given in equation (177) is taken. If y, is taken to be in the range 0 < y, < 0-8, then for
a; = 0-555 and x; = 107% (252) has a maximum value less than 10~* and so is negligible.
From equations (17) and (188)
¥y = {sec’ dxs— 2ty
— 1-197567. (253)

In table 6 the velocity profile obtained numerically and the velocity profiles for different
values of o; computed from equations (251) and (253) are given. It can be seen that there
is excellent agreement between the velocity profile obtained numerically and those obtained
from the asymptotic expansion. Comparison between these profiles gives

o, = 0-555-0-005, (254)

which confirms the value (250) obtained by a different method.
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TABLE 5
left-hand right-hand side of (249)
side of ‘ A \
x (249) a, =05 a, =055 o, = 0-6

1-994 0-720 0-635 0-719 0-806
1-9965 0-703 0-619 0-698 0-781
1-998 0-690 0-607 0-683 0-762
1-9995 0-672 0-591 0-663 0-737
2-0 0-663 0-584 0-654 0-726
2-0005 0-653 0-576 0-644 0-713
2-0009 0-642 0-568 0-633 0-700
2-0014 0-615 0-549 0610 0-672
2001437 0-609 0-547 0-607 0-669
2-00147 0-606 0-545 0-605 0-666

Y B \

:tl TABLE 6. THE VELOCITY PROFILE NEAR SEPARATION
> > numerical
olm 7 results oy =05 oy =06 o, =085 o, =05855 o =056
cﬁ 5 0-05 0-0018 0-0018 0-0018 0-0018 0-:0018 0-0018
@) 0-10 0-0069 0-0069 0-0069 0-0069 0-0069 0-0069
I O 0-15 0-:0154 0-0154 0-0154 0-0154 0-:0154 0-0154
B 0-20 0-0268 0-0269 0-0268 0-0268 0-0268 0-0268
0-25 0-0412 0:0412 0-0411 0-0412 0-0412 0-0411
:t‘ (7)) 0-30 0-0581 0-0583 0-0580 0-0582 0-0581 0-0581
ué 0-35 0:0776 0-:0779 0-0773 0-0776 0-0776 0:0775
E — 0-40 0-0992 0-0998 0-0987 0-0993 0-0992 0-0992
a. 5 N 045 0-1229 0-1238 0-1221 0-1230 0-1229 0-1229
8 <0 0-50 0-1484 0-1498 0-1472 0-1486 0-1485 0-1483
(o) ‘2 0-55 0-1755 0-1776 0-1737 0-1758 0-1756 0-1754
= é 0-60 0-2039 0-2071 0-2015 0-2045 0:2042 0-2039
E - 0-65 0-2334 0:2380 0-2302 0-2344 0-2340 0-2336
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92 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

15. THE POTENTIAL FLOW PAST A CGIRGULAR CYLINDER WITH ZERO SUCTION

15:1. The numerical results

The potential flow past a circular cylinder with mainstream velocity U = Ujsinx and
no suction was next considered. Some of the results for df/dy at typical cross-sections have
been given in table 7 and for (du/dy),_,, J, 05, H and dd,/dx obtained from the momentum
equation in table 8.

The position of separation obtained was 104-45°, whereas Ulrich (1943), by a series
method, obtained 110-0°. To check the solution and to see why there is such a large differ-
ence in the position of the separation point, the values of (du/dy),_, obtained by the two
methods have been compared.

Ulrich (1943) gave a series expansion for (du/dy),_, similar to (237) as far as x°. How-
ever, Tifford (1954) has given some results from which more accurate values of the coeffi-
cients of the powers of ¥ can be obtained and from which the term in #!! can also be calculated.
Using these, it is found that, neglecting terms O(x'3),

y=0

(Pudy),—o = 1-2325877x— 0-4829649x3 1 0-0515987x°
—0-0032351x7 — 0-0000354x9 — 0-0000204x'1.  (255)

The values of (du/dy),_, obtained from (255) have been compared with those given in
table 8 in the following table:

x (radians) 0-5 1-0 1-5 1-6 1-8
(Ouf0y) ,~y (computed) 0-5575 0-7979 0-5520 0-4396 0-1049
(%uldy), o (from (255)) 0-5575 0-7979 0-5523 0-4421 0-1588

Agreement is very good in the region from the leading edge to about 80° (x = 1-4) but
then the results deviate as x increases. At x = 1-8, (du/dy),_, given by (255) is

(3u/3y)y:0 = 2:21866—2-81665+0-97499 —0-19806 — 0-00702—0-01311

= 0-1588, (256)
and clearly, if the series converges, there are insufficient terms to give (du/dy),-, accurately
near the separation point. Ulrich found that the momentum equation was well satisfied
up to about 70° (¥ = 1-2) but from there to separation agreement was not good whereas if
dd,/dx is calculated from the values of 0, in table 8 and compared with dd,/dx obtained from
the momentum equation, it is found that there is excellent agreement for all positions from
the leading edge to separation. Thus the results appear to be very accurate and 104-45°
the correct position of separation.

15:2.  The solution near separation
From table 8 the position of separation is
xg = 1-822983. (257)
The asymptotic expansion for the velocity gradient in the neighbourhood of separation can
be obtained from equations (248) and (180). Hence

R ;(’1”) = oy + 17784802 % +3-3110203 x% - 7-1573atxd - ...
(8sinxg)? (—cosxg) (xg—x)* \9Y/ =0 (258)
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TABLE 7

\x\ 0 0-5 1-0 1-3 1-5 1-65 1-73 1:78 1-816 . 1-821 1:822983
U

0-05 0-0604 0-0588 0-0532 0-0459 0-0377 0-0279 0-0201 0-0132 0-0052 0-0030 0-0008
0-10 0-1183 0-1153 0-1045 0-0907 0-0750 0-0561 0-0411 0-0276 0-0119 0-0076 0-0034
0-15 0-1737 0-1695 0-1542 0-1345 0-1119 0-0848 0-:0630 0-0434 0-0202 0-0138 0-0075
0-20 0-2266 0-2214 0-2021 0-1771 0-1485 0-1139 0-0857 0-0604 0-0301 0-0217 0-0133
0-25 0-2771 0-2710 0-2482 0-2187 0-1847 0-1432 0-1094 0-0786 0-0415 0-0311 0-0207
0-30 0-3252 0-3184 0-2926 0-2592 0-2204 0-1729 0-1338 0-0980 0-0544 0-0421 0-0297
0-35 0-3710 0-3635 0-3353 0-2985 0-2556 0-2027 . 0-1589 0-1184 0-0688 0-:0546 0-0403
0-40 0-4145 0-4064 0-3763 0-3367 0-2903 0-2327 0-1846 0-1399 0-0845 0-0685 0-0523

_g* J‘ 0-45 0-4557 0-4472 0-4155 0-3737 0-3244 0-2628 0-2109 0-1624 0-1015 0-0838 0-0659
<\ 0-50 0-4946 0-4859 0-4530 0-4095 0-3579 0-2929 0-2377 0-1856 0-1198 0-1005 0-0808
] ! 0-6 0-5663 0-5573 0-5231 0-4774 0-4227 0-3527 0-2923 0-2345 0-1598 0-1376 0-1147
< 0-7 0-6299 0-6209 0-5866 0-5404 0-4844 0-4116 0-3478 0-2857 0-2039 0-1791 0-1534
>_( >-4 0-8 0-6859 0-6772 0-6438 0-5984 0-5426 0-4690 0-4034 0-3384 0-2512 0-2243 0-1964
o [ 0-9 0-7351 0-7268 0-6950 0-6514 0-5971 0-5244 0-4583 0-3919 0-3010 0-2726 0-2428

23 1-0 0-7779 0-7702 0-7405 0-6994 0-6476 0-5771 0-5120 0-4455 0-3525 0-3230 0-2919
Qﬁ o 1-2 0-8467 0-8404 0-8158 0-7811 0-7363 0-6733 0-6132 0-5496 0-4574 0-4272 0-3949
23N @) 1-4 0-8968 0-8919 0-8727 0-8451 0-8085 0-7554 0-7030 0-6459 0-5597 0-5306 0-4991
I 1-6 0-9323 0-9288 0-9145 0-8935 0-8651 0-8227 0-7793 0-7306 0-6542 0-6278 0-5987
O 1-8 0-9568 0-9543 0-9441 0-9289 0-9079 0-8755 0-8414 0-8018 0-7374 0-7145 0-6889
=w 2-0 0-9732 0-9715 0-9646 0-9540 0-9391 0-9154 0-8897 0-8590 0-8072 0-7883 0-7669
- 2:2 0-9839 0-9827 0-9782 0-9712 0-9610 0-9444 0-9259 0-9031 0-8633 0-8483 0-8312
<z 2:4 0-9905 0-9899 0-9870 0-9825 0-9758 0-9647 0-9518 0-9356 0-9063 0-8950 0-8819
E (@) 2:6 0-9946 0-9942 0-9925 0-9897 0-9855 0-9783 0-9698 0-9587 0-9380 0-9298 09202
E = 2-8 0-9970 0-9968 0-9958 0-9941 0-9916 0-9871 0-9816 0-9744 0-9603 0-9546 0-9479
o) Ouw 30 0-9984 0-9983 0-9977 0-9968 0-9953 0-9926 0-9892 0-9846 0-9755 0-9717 0-9671
N % o 3-2 0-9992 0-9991 0-9988 0-9983 0-9974 0-9959 0-9939 0-9911 0-9854 0-9829 0-9800
o Z 34 0-9996 0-9996 0-9994 0-9991 0-9987 0-9978 0-9967 0-9950 0-9915 0-9900 0-9881
= § 3:6 0-9998 0-9998 0-9997 0-9996 0-9993 0-9989 0-9982 0-9973 0-9953 0-9944 0-9932
E - 3-8 0-9999 0-9999 0-9999 0-9998 0-9997 0-9994 0-9991 0-9986 0-9975 0-9970 0-9963
4-0 1-0000 1-0000 0-9999 0-9999 0-9998 0-9997 0-9996 0-9993 0-9987 0-9984 0-9980
44 1-0000 1-0000 1-0000 1-:0000 1-0000 0-9999 0-9999 0-9998 0-9997 0-9996 0-9995
4-8 1-:0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 0-9999 0-9999 0-9999
sin x 0 0-4794 0-8415 0-9635 0-9975 0-9969 0-9874 0-9782 0-9701 0-9689 0-9683
sec 3x 1 1-032 1-139 1-256 1-366 1-474 1-542 1-589 1-625 1-630 1-632
TABLE 8

x (radians) (Ou/Oy)y., o, Oy H dd,/dx x (radians) (0u/0y),-, 4, Oy H do,/dx

0-010000 0-0123 0-6479 0-2923 2:217 0-0131 1-680000 0-3309 1-5029 0-5732 2:622 0-6253

0-020000 0-0246 0-6479 0-2924 2:216 0-0012 1-730000 0-2509 1-:6599 0-6068 2-736 0-7188

0-040000 0-0493 0-6481 0-2925 2:216 0-0023 1-738700 0-2356 1-6931 0-6130 2:762 0-7372

0-080000 0-0984 0-6487 0-2927 2216 0-0072 1-747000 0-2205 17270 0-6193 2:789 0-7555

g 0-160000 0-1952 0-6512 0-2937 2-217 0-0165 1-760000 0-1958 1-7853 0-6294 2-837 0-7859

' 0-300000 0-3569 0-6595 0-2971 2-220 0-0332 1-780000 0-1540 1-8916 0-6455 2-930 0-8367

~~ 0-500000 0-5575 0-6813 0-3061 2:226 0-0578 1-787481 0-1368 1-9390 0-6519 2-975 0-8573

— 0-664631 0-6839 0-7093 0-3176 2-234 0-0821 1-794000 0-1208 1-9851 0-6576 3-019 0-8761
< 0-800000 0-7550 0-7408 0-3303 2:243 0-1062 1-800000 0-1049 2-:0326 0-6628 3-067 0-8941
>-< >" 0-903958 0-7870 0-7714 0-3425 2-252 0-1282 1-804997 0-0905 2:0778 0-6673 3114 0-9097
O = 1-000000 0-7979 0-8057 0-3560 2:263 0-1524 1-809000 0-0779 2-1188 0-6710 3-158 0-9228
m 48] 1-100000 0-7897 0-8494 0-3727 2:279 0-1826 1-812998 0-0639 2-1661 0-6748 3-210 0-9363

o 1-200000 0-7611 0-9031 0-3927 2-300 0-2197 1-:816000 0-0519 2:2083 0-6775 3-259 0-9469

= Q) 1-251119 0-7386 0-9356 0-4045 2-313 0-2420 1-819000 0-0377 2-2606 0-6805 3-322 0-9579
I O 1-300000 0-7120 0-9702 0-4169 2-327 0:2660 1-821000 0-0256 2:3070 0-6823 3-381 0-9655
—~ 1-345233 0-6831 1-:0063 0-4296 2-343 0-2910 1-822000 0-0175 2-3392 0-6834 3-423 0-9696

1-390000 0-6503 1-0463 0-4432 2:361 0-3187 1-822450 0-0125 2-3589 0-6838 3:450 0-9714

-l N 1-430113 0-6174 1-0864 0-4565 2-380 0-3466 1-822800 0-:0072 2-3808  0-6841 3-480 0-9729
5 Z 1-450081 0-5998 1-1081 0-4636 2-390 0-3617 1-822825 0-0066 2-3832 0-6843 3-483 0-9731
E 9 1-470000 0-5814 1-1311 0-4709 2-402 0-3777 1-822850 0-0060 2-3857 0-6843 3-486 0-9732
o= 1-500000 0-5520 1-1685 0-4826 2:421 0-4035 1-822900 0-0047 2:3910 0-6843 3:494 0-9734
(@) g 8 1-560000 0-4874 1-2551 0-5086 2:468 0-4629 1-822950 0-0030 2-3984 0-6843 3:505 0-9737
DA 1-600000 0-4396 1-3241 0-5281 2:507 0-5095 1-822975 0-0015 2-4045 0-6843 3-514 0-9738
9 Z 1619962 0-4142 1-3628 0-5385 2:531 0-5353 1-822981 0-0007 2-4074 0-6843 3-518 0-9737
E é 1-630000 0-4011 1-3836 0-5438 2:544 0-5490- 1-822983 0-0004 2-4087 0-6843 3:520 0-9738
& 1-650000 0-3740 1-4279 0-5551 2:572 0-5778 1-822983 0-0002 24099 0-6843 3:521 0-9738
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94 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER

and on substituting for xg from (257) this reduces to

1-4397 (au) = a, -+ 1-26703(1-822983 — x)*

(1-822983 — )t \99) -,
+1-68303(1-822983 —x)* - 2-589a#(1-822983 —x)i ... (259)

In table 9 the second column gives the value of the left-hand side of equation (259) and the
succeeding columns give values of the right-hand side for various «;.

TABLE 9
left-hand right-hand side of (259)

x side of - A N
(radians) (259) a; =0-6 o, =017 ;=08 ;=065 a;=067 a =068
1794 1-022 0-874 1-098 1-:356 0-982 1-027 1-051
1-8 0-996 0-852 1-066 1-309 0-956 0-999 1-021
1-805 0-971 0-832 1-035 1-264 0-931 0-972 0-993
1-809 0-949 0-813 1-007 1-224 0-907 0-947 0-966
1-813 0-920 0-791 0-974 1-176 0-880 0-917 0-936
1-816 0-895 0-770 0-943 1-132 0-854 0-889 0-907
1-819 0-860 0-743 0-902 1-075 0-821 0-853 0-869
1-821 0-826 0-716 0-863 1-019 0-788 0-817 0-832
1-822 0-802 0-694 0:831 0-976 0-762 0-789 0-803
1-82245 0-781 0-679 0-810 0-947 0-744 0-770 0-783

(=]
/\'L, 0-08

(dufoy

I | J
0 0-01 0-02 003

Xg—X

FI1Gure 2. Variation of the skin friction with the distance from the separation point.
———, numerical results; , asymptotic solutions.

The first term that has been neglected in (259) is
o}(A;—0-261n x,) (1-822983 —x), (260)

where 4; is a constant. Thus «; was determined by ensuring that the difference between
the left- and right-hand sides of equation (259) was of the same order as (260). This gave

&, = 0-67740-003. (261)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 95

In figure 2 (du/dy),—, has been plotted against (x;—x) for the numerical results and for
equation (259) when a; = 0-6, 0-7 and 0-8. The agreement between the numerical results
and the asymptotic solution near separation is clearly shown.

Finally the velocity profiles near separation given by the numerical results and by the
asymptotic solution will be compared. From equations (181), (182) and (132) the velocity
distribution close to separation is

uy = (3f]09) yms, = 397 —S0ty1 —0-135203y}

. —{0-0596af +5i5(1 —tan?xg)} y§—0-00089a3y], (262)
where, from equation (253),
y, = {sec?ix,—21 y = 0-815. (263)

For < 1, x, = 1076 and a, = 0-68 it is easily shown that the term (252) is negligible. In
table 10 the velocity profile obtained numerically and the velocity profiles for different «,

TABLE 10. THE VELOCITY DISTRIBUTION NEAR SEPARATION

numerical
7 results o, = 0-67 a; =0-68 o, =069
0-05 0-0008 0-0008 0-0008 0-0008
0-10 0-0033 0-0033 0-0033 0-0033
0-15 0-0075 0-0075 0-0075 0-0075
0-20 0-0132 0-0132 0-0132 0-0132
0-25 0-0206 0-0206 0-0206 0-0206
0-30 0-0296 0-0296 0-0296 0-0296
0-35 0-0402 0-0402 0-0402 0-0401
0-40 0-0522 0-0522 0-0522 0-0522
0-45 0-0657 0-0658 0-0657 0-0657
0-50 0-0807 0-0807 0-0806 0-0805
0-55 0-0969 0-0970 0-0969 0-0968
0-60 0-1145 0-1146 0-1144 0-1143
0-65 0-1333 0-1335 0-1332 0-1329
0-70 0-1532 0-1534 0-1531 0-1527
0-75 0-1742 0-1745 0-1740 0-1735
0-80 0-1961 0-1965 0-1958 0-1951
0-85 0-2190 0-2194 0-2186 0-2176
0-90 0-2425 0-2432 0-2420 0-2408
0-95 0-2667 0-2676 0-2661 0-2646
1-00 0-2916 0-2927 0-2908 0-2889

computed from equations (262) and (263) are given. It can be seen that there is excellent
agreement between the velocity profile obtained numerically and those obtained from the
asymptotic expansion.

Comparison between these profiles gives

a, = 0-676 £ 0-002, (264)
which confirms the value (261).

16. THE EQUATION OF SIMILAR PROFILES

A range of solutions of the equation of similar profiles have been obtained by the author
on the Manchester University Mark I computer. It has been noted earlier that a solution
of the equation of similar profiles is required for the distribution of df/dy at the leading edge.

In particular, SOlutionS Of

12 Vor. 253. A.
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with boundary conditions

at =0, f(0)=1v, df/dg=20
U b f ( ) 0> f/ n a} ( 26 6)
as n-—>oo0, df/dyp—1,
were obtained for several values of v,. These solutions are given in table 11.
TaBLE 11
£(0) +10 +5 +4 +3 +2 +1 +0-5 0 -1 ~2

B
e

S

\J7(0) 10-193961 5-3595396 4-4289466 3-5266403 2-6700560 1-8893138 1-5417511 1-2325877 0-7565749 0-4758106
U

i 0-05 0-4001 0-2360 0-1995 0-1626 01258 0-0909 0-0749 0-:0604 0-0375 0-0237
> 0-10 0-6409 0-4176 0-3607 0-3002 0-2373 0-1750 0-1455 0-1183 0-0744 0-0473

> —~ 0-15 0-7856 0-5571 0-4906 0-4164 0-3359 0-2525 0-2119 0-1737 0-1106 0-0708
O 0-20 0-8723 0-6639 0-5949 0-5144 0-4229 0-3239 0-2742 0-2266 0-1461 0-0941
Qﬁ E 0-25 0-9241 0-7456 0-6787 0-5968 0-4995 0-3896 0-3327 0-2771 0-1810 0-1172
QO 0-30 0-9550 0-8078 0-7456 0:6659 0-5668 0-4498 0-3874 0-3252 0-2150 0-1401
0-35 0-9734 0-8552 0-7991 0-7238 0-6257 0-5049 0-4384 0:3710 0-2484 0-1629

I O 0-40 0-9843 0-8911 0-8417 0-7721 0-6773 0-5553 0-4860 0-4145 0-2809 0-1855
= 0-45 0-9908 0-9183 0-8755 0-8124 0-7223 0-6012 0-5304 0-4557 0-3127 0-2078

0-50 0-9946 0-9389 0-9024 0-8459 0-7616 06431 0-5715 0-4946 0-3436 0-2299

<z 06 09981  0-9660  0-9403  0-8967 08252 07155 06451 05663 04031  0-2735

Yo 07 09994  0-9813  0-9638 09313 08720 07749 07079 06299 04593  0-3160

So= 08 09998  0-9898  0-9783 09547 09083 08231 07611 06859  0-5121  0-3575

&0 09 09999  0-9945  0-9871 09704 09344  0-8620  0-8060 07351  0-5615  0-3979

Q<3 1:0 1:0000 09970 09924 09808  0-9534¢  0-8931  0-8435 07779 06075  0-4370

e} 1-2 1:0000 09992 09974 09922 09771  0-9373  0-0002  0-8467  0-6896  0-5115

= 14 1:0000 09998 09992 09969  0-9891  0-9644  0-9381  0-8968  0-7590  0-5806

T 1-6 — 09999  0-9997  0-9988  0-9950  0-9803 09627 09323 08164  0-6440

A= 1-8 — 1:0000 09999 09996 09978  0-9895  0-9782  0-9568  0-8629  0-7015
20 — 1:0000 10000 09998  0-9991  0-9946  0-9876  0-9732  0-8998  0-7530
24 — 1:0000  1:0000  1-0000  0-9998  0-9987  0-9964  0-9905  0-9500  0-8381
28 — — 1:0000 10000 10000 09997  0-9991  0-9970  0-9774  0-9006
32 — — — 1:0000 10000  0-9999  0-9998  0-9992  0-9908  0-9434
36 — — — — 1:0000  1-0000  1-0000  0-9998  0-9967  0-9703
40 — — — — - 1:0000  1:0000 10000 09989  0-9858
46 — — — — — 1:0000 10000 10000 09998  0-9962
52 — — — — — — — 1:0000 10000 09992
58 — — — — — — — — 1:0000  0-9999
64 — — — — — — — — 1:0000  1-0000

. d’f . d3f df\?
o solutions of =% =5 {1~(~~) } = 0 2
” Als u d +f dr? +f dr (267)

_

—~ for f < 0 and with boundary conditions:

p—

;ﬂ — at =0, df/dy = d¥fjdy? = 0, (268)

OE as g->o00, dffdy—1,

=4 . . . .

- 5 were considered. The values obtained for f{0) corresponding to selected values of § are given

O in table 12 and also results given by various others have been included. In figure 3, f(0)

=w

has been plotted against £ giving the curve which divides the wholly forward flows from
flows with backflow. It may be conjectured that for |f| large this curve is asymptotically
of the form . S(0) ~ 28(|p])} (269)
and the results confirm this.

It is interesting to compare the velocity distribution at separation with a corresponding
solution of the equation of similar profiles. We introduce the suction parameter ¢ where

o = (Uyvl)* dyv4(x). (270)
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 97

Since vg4(x) is non-dimensional so is ¢. For the equation of similar profiles

o =f(0) A,, (271)
where A, = :gjg( — %) dz. (272)

-8
Ficure 3
TABLE 12
B f(0) B S(0)
- 0:05 — 0-5008 0 —0-8757 Emmons & Leigh (1953)
— 01 — 0-2997 —0-0145 —0-7046
— 0-198838 0 —0-0872 —0-3461 } Brown & Donoughe (1951)
— 05 + 0-6460 —0-287 +0-2
— 10 + 14142 —-0-371 +0-4
- 15 + 2-0245 —0-474 +0-6 Thwaites (1949)
— 20 + 2-5489 —0-592 +0-8
-3 + 3-4429 —0-721 +1
-4 + 4-2062 -1-0 2% Thwaites (1949)
— 5 + 4-883
-7 + 6-:065
—10 4+ 7561
—18 +10-69

The velocity profiles will be compared for the same value of ¢ so that
J0) Ay = (Tyfvl)} 8y5(x). (273)

For the flow without suction f(0) = 0 and therefore the required profile is given by the
solution of equation (267) with boundary conditions (268) for f = —0-198838. This is shown
in figure 4 plotted against 5/A, together with the separation profile plotted against y/d,,
where the momentum thickness has been taken as an appropriate measure of the boundary-
layer thickness.

12-2
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98 R. M. TERRILL ON THE LAMINAR BOUNDARY-LAYER
From table 8, for the separation profile
H = 3-521, (274)
whereas for the solution of the equation of similar profiles
H = 4-030. (275)

I-OF

08

0-6

ulUs=f"(n)

04

02

]

0 3 6 9
Yoy = /A,
Ficure 4. Comparison between the velocity distribution at separation and a corresponding solution
of the equation of similar profiles for v,(x) = 0. ——, separation profile; —— 0——, # = —0-198838.
10—
7’
(4
/
¢
081 fe
/
/
/
,I
o
§ 0-6;— ,Il
lL II
=) /
= 0.4_... ,O
/
4
4
,I
02 y
/
/
’
/
i I 1 l
(L 3 6 9
yl9, = /A,

Ficure 5. Comparison between the velocity distribution at separation and a corresponding solution
of the equation of similar profiles for v (x) = 0-5. ——, separation profile; ~— 0——, f = —0-52,
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FLOW NEAR SEPARATION WITH AND WITHOUT SUCTION 99
In the case of flow with constant suction vg(x) = 0-5 equation (273) gives
7 = f(0) A, = 0-3242. (276)

By interpolating between the solutions given in table 12 it is found that f = —0-52 and
also the required velocity profile can be obtained. This is shown in figure 5, together with
the separation profile.

From table 4, for the separation profile

H = 3-291, (277)
whereas for the solution of the equation of similar profiles

H = 3-639. (278)

The author would like to thank Mr E. J. Watson for valuable assistance and criticism
in the preparation of this paper and also the Department of Scientific and Industrial
Research for a maintenance grant.
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